Question Number 219384 by mnjuly1970 last updated on 23/Apr/25 | ||
![]() | ||
Answered by SdC355 last updated on 24/Apr/25 | ||
![]() | ||
$$\int\:\:\:\frac{\mathrm{d}{x}}{\:\sqrt{{x}}}\:\mathrm{cos}^{\mathrm{3}} \left({x}\right)\mathrm{sin}\left({x}\right)={I} \\ $$$$\int\:\:\:\frac{\mathrm{d}{x}}{\:{x}}\:\sqrt{{x}}\mathrm{cos}^{\mathrm{3}} \left({x}\right)\mathrm{sin}\left({x}\right)=\int\:\:\:\frac{\mathrm{d}{x}}{{x}}\:\sqrt{{x}}\mathrm{cos}^{\mathrm{2}} \left({x}\right)\mathrm{cos}\left({x}\right)\mathrm{sin}\left({x}\right) \\ $$$$\int\:\:\frac{\mathrm{d}{x}}{\:\mathrm{2}{x}}\:\sqrt{{x}}\mathrm{cos}^{\mathrm{2}} \left({x}\right)\mathrm{sin}\left(\mathrm{2}{x}\right)=\int\:\:\mathrm{d}{x}\:\frac{{e}^{−{xt}} }{{x}}\sqrt{{x}}\mathrm{cos}^{\mathrm{2}} \left({x}\right)\mathrm{sin}\left(\mathrm{2}{x}\right) \\ $$$$\int_{\:{t}} ^{\:\infty} \:\mathrm{d}{w}\:\mathcal{L}_{{w}} \left\{\sqrt{{x}}\mathrm{cos}^{\mathrm{2}} \left({x}\right)\mathrm{sin}\left(\mathrm{2}{x}\right)\right\}= \\ $$$$\frac{\sqrt{\pi}}{\mathrm{32}}\:\boldsymbol{{i}}\int_{\:{t}} ^{\:\infty} \:\mathrm{d}{w}\:\left\{\frac{\mathrm{2}}{\:\sqrt{\left({w}+\mathrm{2}\boldsymbol{{i}}\right)^{\mathrm{3}} }}−\frac{\mathrm{1}}{\:\sqrt{\left({w}−\mathrm{4}\boldsymbol{{i}}\right)^{\mathrm{3}} }}+\frac{\mathrm{1}}{\:\sqrt{\left({w}+\mathrm{4}\boldsymbol{{i}}\right)^{\mathrm{3}} }}−\frac{\mathrm{2}}{\:\sqrt{\left({w}−\mathrm{2}\boldsymbol{{i}}\right)^{\mathrm{3}} }}\right\} \\ $$$$=\left[−\frac{\sqrt{\pi}}{\mathrm{32}}\:\boldsymbol{{i}}\left\{\frac{\mathrm{4}}{\:\sqrt{{w}+\mathrm{2}\boldsymbol{{i}}}}−\frac{\mathrm{2}}{\:\sqrt{{w}−\mathrm{4}\boldsymbol{{i}}}}+\frac{\mathrm{2}}{\:\sqrt{{w}+\mathrm{4}\boldsymbol{{i}}}}−\frac{\mathrm{4}}{\:\sqrt{{w}−\mathrm{2}\boldsymbol{{i}}}}\right\}\right]_{{w}={t}} ^{{w}=\infty} \\ $$$$\frac{\sqrt{\pi}}{\mathrm{32}}\:\boldsymbol{{i}}\left\{\frac{\mathrm{4}}{\:\sqrt{{t}+\mathrm{2}\boldsymbol{{i}}}}−\frac{\mathrm{2}}{\:\sqrt{{t}−\mathrm{4}\boldsymbol{{i}}}}+\frac{\mathrm{2}}{\:\sqrt{{t}+\mathrm{4}\boldsymbol{{i}}}}−\frac{\mathrm{4}}{\:\sqrt{{t}−\mathrm{2}\boldsymbol{{i}}}}\right\} \\ $$$${t}=\mathrm{0} \\ $$$$\frac{\sqrt{\pi}}{\mathrm{32}}\:\boldsymbol{{i}}\left\{\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}\boldsymbol{{i}}}}−\frac{\mathrm{2}}{\:\sqrt{−\mathrm{4}\boldsymbol{{i}}}}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{4}\boldsymbol{{i}}}}−\frac{\mathrm{4}}{\:\sqrt{−\mathrm{2}\boldsymbol{{i}}}}\right\}=\frac{\mathrm{4}+\sqrt{\mathrm{2}}}{\mathrm{32}}\sqrt{\pi} \\ $$$$\therefore\:\alpha=\frac{\mathrm{4}+\sqrt{\mathrm{2}}}{\mathrm{32}} \\ $$ | ||
Commented by mnjuly1970 last updated on 23/Apr/25 | ||
![]() | ||
$${thanks}\:{alot}\:{bravo}\:{sir} \\ $$ | ||