Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 218833 by Spillover last updated on 16/Apr/25

Answered by mr W last updated on 16/Apr/25

Commented by mr W last updated on 16/Apr/25

R^2 =a^2 +b^2   (b/4)=(a/( (√(a^2 −2^2 )))) ⇒(b^2 /(16))=(a^2 /(a^2 −2^2 ))  (1+4)^2 =(R+(√(b^2 −4^2 )))(R−(√(b^2 −4^2 )))  5^2 =R^2 −b^2 +4^2   5^2 =a^2 +4^2  ⇒a^2 =3^2   ⇒b^2 =((3^2 ×16)/(3^2 −2^2 ))=((144)/5)  (x+2)^2 =(R+(√(a^2 −2^2 )))(R−(√(a^2 −2^2 )))  (x+2)^2 =R^2 −a^2 +2^2 =b^2 +2^2   ⇒x=(√(b^2 +2^2 ))−2         =(√(((144)/5)+4))−2=2(((√(205))/5)−1)≈5.727

$${R}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\frac{{b}}{\mathrm{4}}=\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }}\:\Rightarrow\frac{{b}^{\mathrm{2}} }{\mathrm{16}}=\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} } \\ $$$$\left(\mathrm{1}+\mathrm{4}\right)^{\mathrm{2}} =\left({R}+\sqrt{{b}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} }\right)\left({R}−\sqrt{{b}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} }\right) \\ $$$$\mathrm{5}^{\mathrm{2}} ={R}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} \\ $$$$\mathrm{5}^{\mathrm{2}} ={a}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} \:\Rightarrow{a}^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\frac{\mathrm{3}^{\mathrm{2}} ×\mathrm{16}}{\mathrm{3}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }=\frac{\mathrm{144}}{\mathrm{5}} \\ $$$$\left({x}+\mathrm{2}\right)^{\mathrm{2}} =\left({R}+\sqrt{{a}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }\right)\left({R}−\sqrt{{a}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }\right) \\ $$$$\left({x}+\mathrm{2}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} −{a}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} ={b}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \\ $$$$\Rightarrow{x}=\sqrt{{b}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:=\sqrt{\frac{\mathrm{144}}{\mathrm{5}}+\mathrm{4}}−\mathrm{2}=\mathrm{2}\left(\frac{\sqrt{\mathrm{205}}}{\mathrm{5}}−\mathrm{1}\right)\approx\mathrm{5}.\mathrm{727} \\ $$

Commented by Spillover last updated on 16/Apr/25

great work.thanks

$${great}\:{work}.{thanks} \\ $$

Answered by Spillover last updated on 16/Apr/25

Answered by Spillover last updated on 16/Apr/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com