Question Number 218778 by Spillover last updated on 15/Apr/25 | ||
![]() | ||
Answered by mr W last updated on 15/Apr/25 | ||
![]() | ||
Commented by mr W last updated on 17/Apr/25 | ||
![]() | ||
$${V}_{{cone}} =\frac{\pi{R}^{\mathrm{2}} {h}}{\mathrm{3}} \\ $$$${V}_{{o}} =\left(\frac{\mathrm{tan}\:\phi−\mathrm{tan}\:\theta}{\mathrm{tan}\:\phi+\mathrm{tan}\:\theta}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {V}_{{cone}} \\ $$$$ \\ $$$${see}\:{Q}\mathrm{44017} \\ $$ | ||
Commented by mr W last updated on 15/Apr/25 | ||
![]() | ||
Commented by mr W last updated on 15/Apr/25 | ||
![]() | ||
Commented by mr W last updated on 18/Apr/25 | ||
![]() | ||
$$\frac{{h}_{\mathrm{1}} +{H}}{{h}_{\mathrm{1}} }=\frac{{R}}{{r}}\:\Rightarrow{h}_{\mathrm{1}} =\frac{{H}}{\frac{{R}}{{r}}−\mathrm{1}} \\ $$$$\mathrm{tan}\:\phi=\frac{{H}}{{R}−{r}} \\ $$$$\mathrm{tan}\:\theta=\frac{{H}}{{R}+{r}} \\ $$$$\frac{\mathrm{tan}\:\phi−\mathrm{tan}\:\theta}{\mathrm{tan}\:\phi+\mathrm{tan}\:\theta}=\frac{\frac{{H}}{{R}−{r}}−\frac{{H}}{{R}+{r}}}{\frac{{H}}{{R}−{r}}+\frac{{H}}{{R}+{r}}}=\frac{{r}}{{R}} \\ $$$${V}_{\mathrm{1}} =\frac{\pi{r}^{\mathrm{2}} {h}_{\mathrm{1}} }{\mathrm{3}}=\frac{\pi{r}^{\mathrm{3}} {H}}{\mathrm{3}\left({R}−{r}\right)} \\ $$$${V}_{{Total}} =\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} {V}_{\mathrm{1}} \\ $$$${V}_{{W}} +{V}_{\mathrm{1}} =\left(\frac{\mathrm{tan}\:\phi−\mathrm{tan}\:\theta}{\mathrm{tan}\:\phi+\mathrm{tan}\:\theta}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {V}_{{Total}} \\ $$$${V}_{{W}} +{V}_{\mathrm{1}} =\left(\frac{{r}}{{R}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\frac{{R}}{{r}}\right)^{\mathrm{3}} {V}_{\mathrm{1}} =\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {V}_{\mathrm{1}} \\ $$$${V}_{{W}} =\left[\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{1}\right]{V}_{\mathrm{1}} \\ $$$${V}_{{W}} =\frac{\pi{r}^{\mathrm{3}} {H}}{\mathrm{3}\left({R}−{r}\right)}\left[\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{1}\right] \\ $$$$ \\ $$$${V}_{{W}} +{V}_{\mathrm{1}} =\left(\frac{{h}+{h}_{\mathrm{1}} }{{h}_{\mathrm{1}} }\right)^{\mathrm{3}} {V}_{\mathrm{1}} \\ $$$${V}_{{W}} =\left[\left(\frac{{h}}{{h}_{\mathrm{1}} }+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}\right]{V}_{\mathrm{1}} \\ $$$$\left[\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{1}\right]{V}_{\mathrm{1}} =\left[\left(\frac{{h}}{{h}_{\mathrm{1}} }+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}\right]{V}_{\mathrm{1}} \\ $$$$\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\left(\frac{{h}}{{h}_{\mathrm{1}} }+\mathrm{1}\right)^{\mathrm{3}} \\ $$$$\frac{{h}}{{h}_{\mathrm{1}} }=\sqrt{\frac{{R}}{{r}}}−\mathrm{1} \\ $$$$\Rightarrow{h}=\frac{{H}}{\frac{{R}}{{r}}−\mathrm{1}}\left(\sqrt{\frac{{R}}{{r}}}−\mathrm{1}\right)=\frac{{H}}{\:\sqrt{\frac{{R}}{{r}}}+\mathrm{1}}\:\checkmark \\ $$ | ||
Commented by Spillover last updated on 15/Apr/25 | ||
![]() | ||
$${Wonderfull}\:{solution}.{thank}\:{you} \\ $$ | ||
Answered by Spillover last updated on 15/Apr/25 | ||
![]() | ||
Answered by Spillover last updated on 15/Apr/25 | ||
![]() | ||
Answered by Spillover last updated on 17/Apr/25 | ||
![]() | ||