Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 218778 by Spillover last updated on 15/Apr/25

Answered by mr W last updated on 15/Apr/25

Commented by mr W last updated on 17/Apr/25

V_(cone) =((πR^2 h)/3)  V_o =(((tan φ−tan θ)/(tan φ+tan θ)))^(3/2) V_(cone)     see Q44017

$${V}_{{cone}} =\frac{\pi{R}^{\mathrm{2}} {h}}{\mathrm{3}} \\ $$$${V}_{{o}} =\left(\frac{\mathrm{tan}\:\phi−\mathrm{tan}\:\theta}{\mathrm{tan}\:\phi+\mathrm{tan}\:\theta}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {V}_{{cone}} \\ $$$$ \\ $$$${see}\:{Q}\mathrm{44017} \\ $$

Commented by mr W last updated on 15/Apr/25

Commented by mr W last updated on 15/Apr/25

Commented by mr W last updated on 18/Apr/25

((h_1 +H)/h_1 )=(R/r) ⇒h_1 =(H/((R/r)−1))  tan φ=(H/(R−r))  tan θ=(H/(R+r))  ((tan φ−tan θ)/(tan φ+tan θ))=(((H/(R−r))−(H/(R+r)))/((H/(R−r))+(H/(R+r))))=(r/R)  V_1 =((πr^2 h_1 )/3)=((πr^3 H)/(3(R−r)))  V_(Total) =((R/r))^3 V_1   V_W +V_1 =(((tan φ−tan θ)/(tan φ+tan θ)))^(3/2) V_(Total)   V_W +V_1 =((r/R))^(3/2) ((R/r))^3 V_1 =((R/r))^(3/2) V_1   V_W =[((R/r))^(3/2) −1]V_1   V_W =((πr^3 H)/(3(R−r)))[((R/r))^(3/2) −1]    V_W +V_1 =(((h+h_1 )/h_1 ))^3 V_1   V_W =[((h/h_1 )+1)^3 −1]V_1   [((R/r))^(3/2) −1]V_1 =[((h/h_1 )+1)^3 −1]V_1   ((R/r))^(3/2) =((h/h_1 )+1)^3   (h/h_1 )=(√(R/r))−1  ⇒h=(H/((R/r)−1))((√(R/r))−1)=(H/( (√(R/r))+1)) ✓

$$\frac{{h}_{\mathrm{1}} +{H}}{{h}_{\mathrm{1}} }=\frac{{R}}{{r}}\:\Rightarrow{h}_{\mathrm{1}} =\frac{{H}}{\frac{{R}}{{r}}−\mathrm{1}} \\ $$$$\mathrm{tan}\:\phi=\frac{{H}}{{R}−{r}} \\ $$$$\mathrm{tan}\:\theta=\frac{{H}}{{R}+{r}} \\ $$$$\frac{\mathrm{tan}\:\phi−\mathrm{tan}\:\theta}{\mathrm{tan}\:\phi+\mathrm{tan}\:\theta}=\frac{\frac{{H}}{{R}−{r}}−\frac{{H}}{{R}+{r}}}{\frac{{H}}{{R}−{r}}+\frac{{H}}{{R}+{r}}}=\frac{{r}}{{R}} \\ $$$${V}_{\mathrm{1}} =\frac{\pi{r}^{\mathrm{2}} {h}_{\mathrm{1}} }{\mathrm{3}}=\frac{\pi{r}^{\mathrm{3}} {H}}{\mathrm{3}\left({R}−{r}\right)} \\ $$$${V}_{{Total}} =\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} {V}_{\mathrm{1}} \\ $$$${V}_{{W}} +{V}_{\mathrm{1}} =\left(\frac{\mathrm{tan}\:\phi−\mathrm{tan}\:\theta}{\mathrm{tan}\:\phi+\mathrm{tan}\:\theta}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {V}_{{Total}} \\ $$$${V}_{{W}} +{V}_{\mathrm{1}} =\left(\frac{{r}}{{R}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\frac{{R}}{{r}}\right)^{\mathrm{3}} {V}_{\mathrm{1}} =\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {V}_{\mathrm{1}} \\ $$$${V}_{{W}} =\left[\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{1}\right]{V}_{\mathrm{1}} \\ $$$${V}_{{W}} =\frac{\pi{r}^{\mathrm{3}} {H}}{\mathrm{3}\left({R}−{r}\right)}\left[\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{1}\right] \\ $$$$ \\ $$$${V}_{{W}} +{V}_{\mathrm{1}} =\left(\frac{{h}+{h}_{\mathrm{1}} }{{h}_{\mathrm{1}} }\right)^{\mathrm{3}} {V}_{\mathrm{1}} \\ $$$${V}_{{W}} =\left[\left(\frac{{h}}{{h}_{\mathrm{1}} }+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}\right]{V}_{\mathrm{1}} \\ $$$$\left[\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{1}\right]{V}_{\mathrm{1}} =\left[\left(\frac{{h}}{{h}_{\mathrm{1}} }+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}\right]{V}_{\mathrm{1}} \\ $$$$\left(\frac{{R}}{{r}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\left(\frac{{h}}{{h}_{\mathrm{1}} }+\mathrm{1}\right)^{\mathrm{3}} \\ $$$$\frac{{h}}{{h}_{\mathrm{1}} }=\sqrt{\frac{{R}}{{r}}}−\mathrm{1} \\ $$$$\Rightarrow{h}=\frac{{H}}{\frac{{R}}{{r}}−\mathrm{1}}\left(\sqrt{\frac{{R}}{{r}}}−\mathrm{1}\right)=\frac{{H}}{\:\sqrt{\frac{{R}}{{r}}}+\mathrm{1}}\:\checkmark \\ $$

Commented by Spillover last updated on 15/Apr/25

Wonderfull solution.thank you

$${Wonderfull}\:{solution}.{thank}\:{you} \\ $$

Answered by Spillover last updated on 15/Apr/25

Answered by Spillover last updated on 15/Apr/25

Answered by Spillover last updated on 17/Apr/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com