Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 218735 by Spillover last updated on 14/Apr/25

Answered by som(math1967) last updated on 15/Apr/25

let rad of large circle =R  rad.of small circle=r  AD=2(√2)    (1/2)×R×(4+2(√2))=(1/2)×2×2   ⇒R=2−(√2)    again r(√2)=(2−(√2)−r)  ⇒r((√2)+1)=(2−(√2))   r=((2−(√2))/( (√2)+1))=(√2)((√2)−1)^2 =(√2)(3−2(√2))  Area of small circle  =π×2(3−2(√2))^2 cm^2

$${let}\:{rad}\:{of}\:{large}\:{circle}\:={R} \\ $$$${rad}.{of}\:{small}\:{circle}={r} \\ $$$${AD}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{2}}×{R}×\left(\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×\mathrm{2} \\ $$$$\:\Rightarrow{R}=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$$\:\:{again}\:{r}\sqrt{\mathrm{2}}=\left(\mathrm{2}−\sqrt{\mathrm{2}}−{r}\right) \\ $$$$\Rightarrow{r}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)=\left(\mathrm{2}−\sqrt{\mathrm{2}}\right) \\ $$$$\:{r}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}=\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} =\sqrt{\mathrm{2}}\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$$${Area}\:{of}\:{small}\:{circle} \\ $$$$=\pi×\mathrm{2}\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} {cm}^{\mathrm{2}} \\ $$

Commented by Spillover last updated on 16/Apr/25

great work.thanks

$${great}\:{work}.{thanks}\: \\ $$

Answered by A5T last updated on 15/Apr/25

(√2)+R=2⇒R=2−(√2)  r(√2)=R−r⇒r=(R/(1+(√2)))=((2−(√2))/(1+(√2)))  ⇒r=3(√2)−4  ⇒Area of small circle =2π(17−12(√2))cm^2

$$\sqrt{\mathrm{2}}+\mathrm{R}=\mathrm{2}\Rightarrow\mathrm{R}=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$$\mathrm{r}\sqrt{\mathrm{2}}=\mathrm{R}−\mathrm{r}\Rightarrow\mathrm{r}=\frac{\mathrm{R}}{\mathrm{1}+\sqrt{\mathrm{2}}}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{1}+\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\mathrm{r}=\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{4} \\ $$$$\Rightarrow\mathrm{Area}\:\mathrm{of}\:\mathrm{small}\:\mathrm{circle}\:=\mathrm{2}\pi\left(\mathrm{17}−\mathrm{12}\sqrt{\mathrm{2}}\right)\mathrm{cm}^{\mathrm{2}} \\ $$

Commented by Spillover last updated on 16/Apr/25

great work.thanks

$${great}\:{work}.{thanks}\: \\ $$

Answered by Spillover last updated on 16/Apr/25

Answered by Spillover last updated on 16/Apr/25

Answered by Spillover last updated on 16/Apr/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com