Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 218676 by Spillover last updated on 14/Apr/25

Answered by mr W last updated on 14/Apr/25

cos θ=((R−r)/(R+r))=1−2 sin^2  (θ/2)  ⇒sin (θ/2)=(√(r/(R+r)))  x=2R sin (θ/2)=2R(√(r/(R+r)))  ✓

$$\mathrm{cos}\:\theta=\frac{{R}−{r}}{{R}+{r}}=\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\sqrt{\frac{{r}}{{R}+{r}}} \\ $$$${x}=\mathrm{2}{R}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{2}{R}\sqrt{\frac{{r}}{{R}+{r}}}\:\:\checkmark \\ $$

Commented by mr W last updated on 14/Apr/25

Commented by A5T last updated on 14/Apr/25

x=(√(2R^2 (1−cosθ)))=(√(2R^2 (1−((R−r)/(R+r)))))  ⇒x=(√(2R^2 (((2r)/(R+r)))))=2R(√(r/(R+r)))

$$\mathrm{x}=\sqrt{\mathrm{2R}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\theta\right)}=\sqrt{\mathrm{2R}^{\mathrm{2}} \left(\mathrm{1}−\frac{\mathrm{R}−\mathrm{r}}{\mathrm{R}+\mathrm{r}}\right)} \\ $$$$\Rightarrow\mathrm{x}=\sqrt{\mathrm{2R}^{\mathrm{2}} \left(\frac{\mathrm{2r}}{\mathrm{R}+\mathrm{r}}\right)}=\mathrm{2R}\sqrt{\frac{\mathrm{r}}{\mathrm{R}+\mathrm{r}}} \\ $$

Commented by Spillover last updated on 14/Apr/25

great

$${great} \\ $$

Commented by Spillover last updated on 14/Apr/25

great

$${great} \\ $$

Answered by Spillover last updated on 14/Apr/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com