Previous in Relation and Functions Next in Relation and Functions | ||
Question Number 218673 by Spillover last updated on 14/Apr/25 | ||
![]() | ||
Commented by Nicholas666 last updated on 14/Apr/25 | ||
![]() | ||
$$\varphi \\ $$ | ||
Answered by Nicholas666 last updated on 14/Apr/25 | ||
![]() | ||
$$\:\frac{\varphi}{\varphi^{\mathrm{2}} −\mathrm{1}}+\frac{\varphi^{\mathrm{2}} }{\varphi^{\mathrm{4}} −\mathrm{1}\:}+\frac{\varphi^{\mathrm{4}} }{\varphi^{\mathrm{8}} −\mathrm{1}}+..... \\ $$$${solution}; \\ $$$$\:\frac{\varphi^{\mathrm{2}{n}−\mathrm{1}} }{\varphi^{\mathrm{2}{n}} −\mathrm{1}}=\:\frac{\mathrm{1}}{\varphi^{\mathrm{2}{n}} −\mathrm{1}}\:−\frac{\mathrm{1}}{\varphi^{\mathrm{2}{n}} −\mathrm{1}} \\ $$$${S}=\left(\frac{\mathrm{1}}{\varphi−\mathrm{1}}\:\:−\:\frac{\mathrm{1}}{\varphi−\mathrm{1}}\right)+\left(\frac{\mathrm{1}}{\varphi^{\mathrm{2}} −\mathrm{1}}\:−\frac{\mathrm{1}}{\varphi^{\mathrm{4}} −\mathrm{1}}\right)+\left(\frac{\mathrm{1}}{\varphi^{\mathrm{4}} −\mathrm{1}}\:−\frac{\mathrm{1}}{\varphi^{\mathrm{8}} −\mathrm{1}}\right)+......\:\: \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\varphi−\mathrm{1}}\:−\:\frac{\mathrm{1}}{\varphi^{\mathrm{2}{n}} −\mathrm{1}} \\ $$$${S}_{{n}\:} =\varphi−\:\frac{\mathrm{1}}{\varphi^{\mathrm{2}{n}} −\mathrm{1}}\:=\varphi\: \\ $$ | ||
Answered by Charleston last updated on 14/Apr/25 | ||
![]() | ||
$$ \\ $$ | ||
Answered by Spillover last updated on 14/Apr/25 | ||
![]() | ||