Question Number 218636 by hardmath last updated on 13/Apr/25 | ||
![]() | ||
Answered by vnm last updated on 14/Apr/25 | ||
![]() | ||
$${let} \\ $$$$\:{a}_{{k}} =\frac{\mathrm{1}}{\mathrm{3}{k}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}{k}−\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{3}{k}} \\ $$$${b}_{{k}} =\frac{\mathrm{4}{k}}{\mathrm{4}{k}+\mathrm{1}}−\frac{\mathrm{4}\left({k}−\mathrm{1}\right)}{\mathrm{4}\left({k}−\mathrm{1}\right)+\mathrm{1}} \\ $$$${if}\:\:\forall{k}\geqslant\mathrm{1}\:{a}_{{k}} >{b}_{{k}} \:{then} \\ $$$$\forall{n}\geqslant\mathrm{1}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} >\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{b}_{{k}} =\frac{\mathrm{4}{n}}{\mathrm{4}{n}+\mathrm{1}} \\ $$$${a}_{{k}} =\frac{\mathrm{9}{k}−\mathrm{4}}{\mathrm{3}\left(\mathrm{3}{k}−\mathrm{2}\right)\left(\mathrm{3}{k}−\mathrm{1}\right){k}} \\ $$$${b}_{{k}} =\frac{\mathrm{4}}{\left(\mathrm{4}{k}+\mathrm{1}\right)\left(\mathrm{4}{k}−\mathrm{3}\right)} \\ $$$${a}_{{k}} −{b}_{{k}} =\frac{\mathrm{9}{k}−\mathrm{4}}{\mathrm{3}\left(\mathrm{3}{k}−\mathrm{2}\right)\left(\mathrm{3}{k}−\mathrm{1}\right){k}}−\frac{\mathrm{4}}{\left(\mathrm{4}{k}+\mathrm{1}\right)\left(\mathrm{4}{k}−\mathrm{3}\right)}= \\ $$$$\frac{\mathrm{36}{k}^{\mathrm{3}} −\mathrm{28}{k}^{\mathrm{2}} −\mathrm{19}{k}+\mathrm{12}}{\mathrm{3}{k}\left(\mathrm{3}{k}−\mathrm{2}\right)\left(\mathrm{3}{k}−\mathrm{1}\right)\left(\mathrm{4}{k}+\mathrm{1}\right)\left(\mathrm{4}{k}−\mathrm{3}\right)} \\ $$$$\mathrm{36}{k}^{\mathrm{3}} −\mathrm{28}{k}^{\mathrm{2}} −\mathrm{19}{k}+\mathrm{12}=\left[\mathrm{2}{k}={m}\right]= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{9}{m}^{\mathrm{3}} −\mathrm{14}{m}^{\mathrm{2}} −\mathrm{19}{m}+\mathrm{24}\right)= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({m}−\mathrm{1}\right)\left(\mathrm{9}{m}^{\mathrm{2}} −\mathrm{5}{m}−\mathrm{24}\right)=\mathrm{0} \\ $$$${m}_{\mathrm{1}} =\mathrm{1},\:\:{m}_{\mathrm{2},\mathrm{3}} =\frac{\mathrm{5}\pm\sqrt{\mathrm{889}}}{\mathrm{18}} \\ $$$$\frac{\mathrm{5}+\sqrt{\mathrm{889}}}{\mathrm{18}}<\frac{\mathrm{5}+\mathrm{30}}{\mathrm{18}}<\mathrm{2}\Rightarrow\forall{k}\geqslant\mathrm{1}\:{a}_{{k}} −{b}_{{k}} >\mathrm{0} \\ $$ | ||
Commented by hardmath last updated on 17/Apr/25 | ||
![]() | ||
$$\mathrm{thankyou}\:\mathrm{dearprofessor} \\ $$ | ||