Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 218606 by Spillover last updated on 12/Apr/25

Answered by A5T last updated on 13/Apr/25

Commented by A5T last updated on 13/Apr/25

∠BAF=α ⇒ ∠ABF=α since BF=AF  Similarly ∠CAF=∠AFC=β since AF=FC  ∠ABC+∠BCA+∠CAB=180° ⇒ 2(α+β)=180°  ⇒α+β=90°=∠BAC  sin∠BO_1 O_2 =((√((R+r)^2 −(R−r)^2 ))/(R+r))=((2(√(Rr)))/(R+r))  sin∠AO_2 C=((2(√(Rr)))/(R+r))  [ABC]=((2(R+r)(√(Rr)))/2)−((R^2 (√(Rr)))/(R+r))−((r^2 (√(Rr)))/(R+r))  ⇒[ABC]=(([(R+r)^2 −R^2 −r^2 ](√(Rr)))/(R+r))=((2Rr(√(Rr)))/(R+r))

$$\angle\mathrm{BAF}=\alpha\:\Rightarrow\:\angle\mathrm{ABF}=\alpha\:\mathrm{since}\:\mathrm{BF}=\mathrm{AF} \\ $$$$\mathrm{Similarly}\:\angle\mathrm{CAF}=\angle\mathrm{AFC}=\beta\:\mathrm{since}\:\mathrm{AF}=\mathrm{FC} \\ $$$$\angle\mathrm{ABC}+\angle\mathrm{BCA}+\angle\mathrm{CAB}=\mathrm{180}°\:\Rightarrow\:\mathrm{2}\left(\alpha+\beta\right)=\mathrm{180}° \\ $$$$\Rightarrow\alpha+\beta=\mathrm{90}°=\angle\mathrm{BAC} \\ $$$$\mathrm{sin}\angle\mathrm{BO}_{\mathrm{1}} \mathrm{O}_{\mathrm{2}} =\frac{\sqrt{\left(\mathrm{R}+\mathrm{r}\right)^{\mathrm{2}} −\left(\mathrm{R}−\mathrm{r}\right)^{\mathrm{2}} }}{\mathrm{R}+\mathrm{r}}=\frac{\mathrm{2}\sqrt{\mathrm{Rr}}}{\mathrm{R}+\mathrm{r}} \\ $$$$\mathrm{sin}\angle\mathrm{AO}_{\mathrm{2}} \mathrm{C}=\frac{\mathrm{2}\sqrt{\mathrm{Rr}}}{\mathrm{R}+\mathrm{r}} \\ $$$$\left[\mathrm{ABC}\right]=\frac{\mathrm{2}\left(\mathrm{R}+\mathrm{r}\right)\sqrt{\mathrm{Rr}}}{\mathrm{2}}−\frac{\mathrm{R}^{\mathrm{2}} \sqrt{\mathrm{Rr}}}{\mathrm{R}+\mathrm{r}}−\frac{\mathrm{r}^{\mathrm{2}} \sqrt{\mathrm{Rr}}}{\mathrm{R}+\mathrm{r}} \\ $$$$\Rightarrow\left[\mathrm{ABC}\right]=\frac{\left[\left(\mathrm{R}+\mathrm{r}\right)^{\mathrm{2}} −\mathrm{R}^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} \right]\sqrt{\mathrm{Rr}}}{\mathrm{R}+\mathrm{r}}=\frac{\mathrm{2Rr}\sqrt{\mathrm{Rr}}}{\mathrm{R}+\mathrm{r}} \\ $$

Commented by Spillover last updated on 13/Apr/25

correct

$${correct} \\ $$

Answered by mr W last updated on 13/Apr/25

Commented by mr W last updated on 13/Apr/25

2α+2β=180°  ⇒α+α=90°  ⇒∠BAC=90°  BC=(√((R_1 −R_2 )^2 −(R_1 −R_2 )^2 ))=2(√(R_1 R_2 ))  h=R_2 +((R_2 (R_1 −R_2 ))/(R_1 +R_2 ))=((2R_1 R_2 )/(R_1 +R_2 ))  Δ_(ABC) =((AB×h)/2)=((2(√(R_1 R_2 )))/2)×((2R_1 R_2 )/(R_1 +R_2 ))               =((2R_1 R_2 (√(R_1 R_2 )))/(R_1 +R_2 )) ✓

$$\mathrm{2}\alpha+\mathrm{2}\beta=\mathrm{180}° \\ $$$$\Rightarrow\alpha+\alpha=\mathrm{90}° \\ $$$$\Rightarrow\angle{BAC}=\mathrm{90}° \\ $$$${BC}=\sqrt{\left({R}_{\mathrm{1}} −{R}_{\mathrm{2}} \right)^{\mathrm{2}} −\left({R}_{\mathrm{1}} −{R}_{\mathrm{2}} \right)^{\mathrm{2}} }=\mathrm{2}\sqrt{{R}_{\mathrm{1}} {R}_{\mathrm{2}} } \\ $$$${h}={R}_{\mathrm{2}} +\frac{{R}_{\mathrm{2}} \left({R}_{\mathrm{1}} −{R}_{\mathrm{2}} \right)}{{R}_{\mathrm{1}} +{R}_{\mathrm{2}} }=\frac{\mathrm{2}{R}_{\mathrm{1}} {R}_{\mathrm{2}} }{{R}_{\mathrm{1}} +{R}_{\mathrm{2}} } \\ $$$$\Delta_{{ABC}} =\frac{{AB}×{h}}{\mathrm{2}}=\frac{\mathrm{2}\sqrt{{R}_{\mathrm{1}} {R}_{\mathrm{2}} }}{\mathrm{2}}×\frac{\mathrm{2}{R}_{\mathrm{1}} {R}_{\mathrm{2}} }{{R}_{\mathrm{1}} +{R}_{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}{R}_{\mathrm{1}} {R}_{\mathrm{2}} \sqrt{{R}_{\mathrm{1}} {R}_{\mathrm{2}} }}{{R}_{\mathrm{1}} +{R}_{\mathrm{2}} }\:\checkmark \\ $$

Commented by Spillover last updated on 13/Apr/25

correct

$${correct} \\ $$

Answered by Spillover last updated on 13/Apr/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com