Question Number 218526 by Spillover last updated on 11/Apr/25 | ||
![]() | ||
Commented by mr W last updated on 11/Apr/25 | ||
![]() | ||
$$\approx\mathrm{0}.\mathrm{8348} \\ $$ | ||
Commented by Spillover last updated on 11/Apr/25 | ||
![]() | ||
$${correct} \\ $$ | ||
Answered by mr W last updated on 11/Apr/25 | ||
![]() | ||
Commented by mr W last updated on 12/Apr/25 | ||
![]() | ||
$$``{a}''\:{in}\:{original}\:{question}\:{is}\:{replaced} \\ $$$${with}\:\mathrm{2}{s}\:{in}\:{following}. \\ $$$${say}\:{A}\left({a},\mathrm{0}\right),\:{B}\left(\mathrm{0},{b}\right) \\ $$$${r}=\frac{{ab}}{{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}=\mathrm{1}\:{or}\:{bx}+{ay}={ab}\:\:\:\leftarrow\:{eqn}.\:{of}\:{AB} \\ $$$${s}=\frac{{bs}+{as}−{ab}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\left({a}+{b}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){s}={ab} \\ $$$${say}\:\alpha=\frac{{a}}{{s}},\:\beta=\frac{{b}}{{s}} \\ $$$$\alpha+\beta−\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }=\alpha\beta \\ $$$$\beta=\frac{\mathrm{2}\left(\mathrm{1}−\alpha\right)}{\mathrm{2}−\alpha}\:\:\:...\left({I}\right) \\ $$$$ \\ $$$$\left({x}−{a}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{ax}+{y}^{\mathrm{2}} ={b}^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$\left({x}−{s}\right)^{\mathrm{2}} +\left({y}−{s}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{sx}+{y}^{\mathrm{2}} −\mathrm{2}{sy}=−{s}^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\mathrm{2}\left({s}−{a}\right){x}+\mathrm{2}{sy}={b}^{\mathrm{2}} +{s}^{\mathrm{2}} \:\:\:\leftarrow\:{eqn}.\:{of}\:{intersection}\:{line} \\ $$$${d}=\frac{\mathrm{2}\left({s}−{a}\right){s}+\mathrm{2}{s}^{\mathrm{2}} −{b}^{\mathrm{2}} −{s}^{\mathrm{2}} }{\:\mathrm{2}\sqrt{\left({s}−{a}\right)^{\mathrm{2}} +{s}^{\mathrm{2}} }}={s}−\mathrm{2}{r} \\ $$$$\frac{\mathrm{3}{s}^{\mathrm{2}} −\mathrm{2}{as}−{b}^{\mathrm{2}} }{\:\mathrm{2}\sqrt{\mathrm{2}{s}^{\mathrm{2}} −\mathrm{2}{sa}+{a}^{\mathrm{2}} }}={s}−\frac{\mathrm{2}{ab}}{{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{3}−\mathrm{2}\alpha−\beta^{\mathrm{2}} }{\:\mathrm{2}\sqrt{\mathrm{2}−\mathrm{2}\alpha+\alpha^{\mathrm{2}} }}=\mathrm{1}−\frac{\mathrm{2}\alpha\beta}{\alpha+\beta+\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }}\:\:\:...\left({II}\right) \\ $$$$ \\ $$$${from}\:\left({I}\right)\:{and}\:\left({II}\right)\:{we}\:{get} \\ $$$$\alpha\approx\mathrm{0}.\mathrm{677}\:\mathrm{564}\:\mathrm{399}\:\mathrm{386},\:\beta\approx\mathrm{0}.\mathrm{487}\:\mathrm{639}\:\mathrm{020}\:\mathrm{704} \\ $$$$\frac{\mathrm{2}{AB}}{``{a}''}=\frac{{AB}}{{s}}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{s}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }\approx\mathrm{0}.\mathrm{834}\:\mathrm{796}\:\mathrm{579}\:\mathrm{910}\:\checkmark \\ $$ | ||
Commented by mr W last updated on 11/Apr/25 | ||
![]() | ||
Commented by Spillover last updated on 17/Apr/25 | ||
![]() | ||
$${GOD}\:{bless}\:{you}.{very}?{nice} \\ $$$${solution} \\ $$ | ||
Answered by Spillover last updated on 11/Apr/25 | ||
![]() | ||