Question Number 218411 by Spillover last updated on 09/Apr/25 | ||
![]() | ||
Answered by mr W last updated on 09/Apr/25 | ||
![]() | ||
Commented by mr W last updated on 09/Apr/25 | ||
![]() | ||
$${S}_{\mathrm{1}} =\pi{r}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$${S}_{\mathrm{2}} =\pi{r}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\frac{{S}_{\mathrm{1}} }{{S}_{\mathrm{2}} }=\left(\frac{{r}_{\mathrm{1}} }{{r}_{\mathrm{2}} }\right)^{\mathrm{2}} =\mathrm{4}\:\Rightarrow\frac{{r}_{\mathrm{1}} }{{r}_{\mathrm{2}} }=\mathrm{2} \\ $$$${V}_{\mathrm{1}} =\frac{{S}_{\mathrm{1}} {h}_{\mathrm{1}} }{\mathrm{3}}=\frac{\pi{r}_{\mathrm{1}} ^{\mathrm{2}} {h}_{\mathrm{1}} }{\mathrm{3}} \\ $$$${V}_{\mathrm{2}} =\frac{{S}_{\mathrm{2}} {h}_{\mathrm{2}} }{\mathrm{3}}=\frac{\pi{r}_{\mathrm{2}} ^{\mathrm{2}} {h}_{\mathrm{2}} }{\mathrm{3}} \\ $$$${V}_{{C}} ={V}_{\mathrm{1}} −{V}_{\mathrm{2}} ={volume}\:{of}\:{cone} \\ $$$${V}_{{S}} =\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}}={volume}\:{of}\:{sphere} \\ $$$${h}_{\mathrm{1}} ={h}_{\mathrm{2}} +\mathrm{2}{R} \\ $$$$\frac{{h}_{\mathrm{1}} }{{h}_{\mathrm{2}} }=\frac{{r}_{\mathrm{1}} }{{r}_{\mathrm{2}} }=\mathrm{2} \\ $$$$\frac{{h}_{\mathrm{2}} +\mathrm{2}{R}}{{h}_{\mathrm{2}} }=\mathrm{2}\:\Rightarrow\frac{{R}}{{h}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{h}_{\mathrm{2}} =\mathrm{2}{R} \\ $$$$\frac{{r}_{\mathrm{2}} }{{R}}=\frac{\sqrt{{h}_{\mathrm{2}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} }}{{h}_{\mathrm{2}} +{R}} \\ $$$$\frac{{r}_{\mathrm{2}} }{{R}}=\frac{\sqrt{\mathrm{4}{R}^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} }}{\mathrm{2}{R}+{R}} \\ $$$$\mathrm{2}{r}_{\mathrm{2}} ^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{r}_{\mathrm{2}} ^{\mathrm{2}} }{{R}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{V}_{{C}} }{{V}_{{S}} }=\frac{{r}_{\mathrm{1}} ^{\mathrm{2}} {h}_{\mathrm{1}} −{r}_{\mathrm{2}} ^{\mathrm{2}} {h}_{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{3}} } \\ $$$$\:\:\:\:\:=\frac{\mathrm{4}{r}_{\mathrm{2}} ^{\mathrm{2}} ×\mathrm{2}{h}_{\mathrm{2}} −{r}_{\mathrm{2}} ^{\mathrm{2}} {h}_{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{3}} } \\ $$$$\:\:\:\:\:=\frac{\mathrm{7}{r}_{\mathrm{2}} ^{\mathrm{2}} ×\mathrm{2}{R}}{\mathrm{4}{R}^{\mathrm{3}} }=\frac{\mathrm{7}{r}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{2}{R}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{4}}\:\checkmark \\ $$ | ||
Commented by Spillover last updated on 09/Apr/25 | ||
![]() | ||
$${thank}\:{you} \\ $$ | ||
Answered by Nicholas666 last updated on 09/Apr/25 | ||
![]() | ||
$$\:\frac{{volume}\left({cone}\right)}{{volume}\left({sphere}\right.}=\frac{\frac{\mathrm{14}\sqrt{\mathrm{2}}}{\mathrm{3}}\pi{r}^{\mathrm{3}} }{\frac{\mathrm{8}\sqrt{\mathrm{2}}}{\mathrm{3}}\pi{r}^{\mathrm{3}} }=\frac{\mathrm{14}\sqrt{\mathrm{2}}}{\mathrm{8}\sqrt{\mathrm{2}}}=\frac{\mathrm{14}}{\mathrm{8}}=\mathrm{7}/\mathrm{4} \\ $$$$ \\ $$ | ||
Commented by mr W last updated on 11/Apr/25 | ||
![]() | ||
$${it}\:{makes}\:{little}\:{sense},\:{when}\:{you}\:{just} \\ $$$${post}\:{a}\:{result}\:{without}\:{showing}\:{how} \\ $$$${to}\:{get}\:{it}.\:{people}\:{want}\:{to}\:{know}\:{the} \\ $$$${path},\:{not}\:{only}\:{the}\:{final}\:{answer}. \\ $$ | ||