Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 218410 by Spillover last updated on 09/Apr/25

Answered by Nicholas666 last updated on 09/Apr/25

 given;AB,CD tangents to circle O:  M midpoint of BC; AD∣∣BC; BD=x,AB=y,CD=z  prove x^2 =y.z  solution  ∗AD∣∣BC ∠ABD=∠DBC  (alternate interior angles)   ∗∠ABD=∠BDC  (angle between tangent and chord)   ∗ABD∼△BDC (AA: ∠ABD=∠DBC, ∠ABD=∠BDC)   ∗ratio of corresponding sides; AB/BD=BD/CD   ∗  y/x=x/z=y.z=x.x=y.z=x^2   ∗cross−multiply : x^2 =y.z    q.e.d

$$\:{given};{AB},{CD}\:{tangents}\:{to}\:{circle}\:{O}: \\ $$$${M}\:{midpoint}\:{of}\:{BC};\:{AD}\mid\mid{BC};\:{BD}={x},{AB}={y},{CD}={z} \\ $$$${prove}\:{x}^{\mathrm{2}} ={y}.{z} \\ $$$${solution} \\ $$$$\ast{AD}\mid\mid{BC} \angle{ABD}=\angle{DBC}\:\:\left({alternate}\:{interior}\:{angles}\right)\: \\ $$$$\ast\angle{ABD}=\angle{BDC}\:\:\left({angle}\:{between}\:{tangent}\:{and}\:{chord}\right)\: \\ $$$$\ast{ABD}\sim\bigtriangleup{BDC}\:\left({AA}:\:\angle{ABD}=\angle{DBC},\:\angle{ABD}=\angle{BDC}\right)\: \\ $$$$\ast{ratio}\:{of}\:{corresponding}\:{sides};\:{AB}/{BD}={BD}/{CD}\: \\ $$$$\ast\:\:{y}/{x}={x}/{z}={y}.{z}={x}.{x}={y}.{z}={x}^{\mathrm{2}} \\ $$$$\ast{cross}−{multiply}\::\:{x}^{\mathrm{2}} ={y}.{z} \\ $$$$ \\ $$$${q}.{e}.{d} \\ $$$$ \\ $$

Answered by Spillover last updated on 10/Apr/25

Answered by Spillover last updated on 10/Apr/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com