Question Number 218399 by Nicholas666 last updated on 09/Apr/25 | ||
![]() | ||
Answered by MrGaster last updated on 10/Apr/25 | ||
![]() | ||
$$\begin{array}{|c|}{{f}\left({n}\right)=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}}\\\hline\end{array}\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{even} \\ $$$$\cancel{{f}\left({n}\right)=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$${f}\left({n}\right)=\frac{{n}^{\mathrm{2}} −\tau\left({n}\right)}{\mathrm{2}} \\ $$$${f}\left({n}\right)+{f}\left({f}\left({n}\right)\right)=\frac{{n}^{\mathrm{2}} −\tau\left({n}\right)}{\mathrm{2}}+\frac{\left(\frac{{n}^{\mathrm{2}} −\tau\left({n}\right)}{\mathrm{2}}\:\right)^{\mathrm{2}} −\tau\left(\frac{{n}^{\mathrm{2}} −\tau\left({n}\right)}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$=\frac{{n}^{\mathrm{2}} −\tau\left({n}\right)}{\mathrm{2}}+\frac{{n}^{\mathrm{4}} −\mathrm{2}{n}^{\mathrm{2}} \tau\left({n}\right)+\tau\left({n}\right)^{\mathrm{2}} −\mathrm{4}\tau\left(\frac{{n}^{\mathrm{2}} −\tau\left({n}\right)}{\mathrm{2}}\right)}{\mathrm{8}} \\ $$$$\cancel{\mathrm{does}\:\mathrm{not}\:\mathrm{hold}} \\ $$$${f}\left({n}\right)+{f}\left({f}\left({n}\right)\right)=\tau\left({n}\right){n}+\tau\left(\tau\left({n}\right){n}\right)\centerdot\tau\left({n}\right){n}={n}^{\mathrm{2}} \\ $$$$\Rightarrow\tau\left({n}\right)\left({n}+\tau\left(\tau\left({n}\right){n}\right)\centerdot\tau\left({n}\right){n}\right)={n}^{\mathrm{2}} \\ $$$$\cancel{\mathrm{no}\:\mathrm{solution}} \\ $$$$\begin{array}{|c|}{{f}\left({n}\right)={n}^{\mathrm{2}} −\tau\left({n}\right)^{\mathrm{2}} }\\\hline\end{array} \\ $$$${f}\left({n}\right)+{f}\left({f}\left({n}\right)\right)={n}^{\mathrm{2}} −\tau\left({n}\right)^{\mathrm{2}} +\left({n}^{\mathrm{2}} −\tau\left({n}\right)^{\mathrm{2}} \right)^{\mathrm{2}} −\tau\left({n}^{\mathrm{2}} −\tau\left({n}\right)^{\mathrm{2}} \right)^{\mathrm{2}} ={n}^{\mathrm{2}} \\ $$$$\cancel{\mathrm{does}\:\mathrm{not}\:\mathrm{hold}} \\ $$$$\begin{array}{|c|}{{f}\left({n}\right)=\frac{{n}^{\mathrm{2}} }{\mathrm{1}+\tau\left({n}\right)}}\\\hline\end{array} \\ $$$$\Rightarrow\frac{{n}^{\mathrm{2}} }{\mathrm{1}+\tau\left({n}\right)}+\frac{\left(\frac{{n}^{\mathrm{2}} }{\mathrm{1}+\tau\left({n}\right)}\right)^{\mathrm{2}} }{\mathrm{1}+\tau\left(\frac{{n}^{\mathrm{2}} }{\mathrm{1}+\tau\left({n}\right)}\right)}={n}^{\mathrm{2}} \\ $$$$\cancel{\mathrm{does}\:\mathrm{not}\:\mathrm{hold}} \\ $$$$\begin{array}{|c|}{{f}\left({n}\right)=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\:\mathrm{when}\:\tau\left({n}\right)\mathrm{is}\:\mathrm{even},{f}\left({n}\right)=\frac{{n}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\mathrm{when}\:\tau\left({n}\right)\mathrm{is}\:\mathrm{odd}}\\\hline\end{array} \\ $$$$\mathrm{verify}\:{n}=\mathrm{2}\left(\tau=\mathrm{2even}\right):{f}\left(\mathrm{2}\right)=\mathrm{2},{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{2}\right)=\mathrm{4}=\mathrm{2}^{\mathrm{2}} \\ $$$${n}=\mathrm{4}\left(\tau=\mathrm{3odd}\right):{f}\left(\mathrm{4}\right)=\frac{\mathrm{16}−\mathrm{1}}{\mathrm{2}}=\mathrm{7}.\mathrm{5}\:\cancel{\mathrm{not}\:\mathrm{an}\:\mathrm{integer}} \\ $$$$\begin{array}{|c|}{{f}\left({n}\right)=\begin{cases}{\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\:{n}\:\mathrm{evem}}\\{\frac{{n}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\:{n}\:{odd}}\end{cases}}\\\hline\end{array} \\ $$$${n}=\mathrm{3}:{f}\left(\mathrm{3}\right)=\mathrm{4},{f}\left(\mathrm{4}\right)=\mathrm{8}\Rightarrow\mathrm{4}+\mathrm{8}=\mathrm{12}\neq\mathrm{9}\:\cancel{\mathrm{error}} \\ $$$$\begin{array}{|c|}{{f}\left({n}\right)=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\:\forall{n}\in\mathbb{Z}^{+} }\\\hline\end{array}\mathrm{but}\:\mathrm{only}\:\mathrm{when}\:{n}=\mathrm{2}\:\mathrm{holds} \\ $$$$\mathrm{final}\:\mathrm{solution}\:\mathrm{must}\:\mathrm{satisfy}\:{f}\left({n}\right)+{f}\left({f}\left({n}\right)\right)={n}^{\mathrm{2}} \:\mathrm{and}\:{f}\left({n}\right)\mathrm{is}\:\mathrm{related}\:\mathrm{to}\:\tau\left({n}\right) \\ $$$$\begin{array}{|c|}{{f}\left({n}\right)={n}^{\mathrm{2}} −\tau\left({n}\right)}\\\hline\end{array}\mathrm{partially}\:\mathrm{holds}\:\mathrm{e}.\mathrm{g}.,{n}=\mathrm{2},{f}\left(\mathrm{2}\right)=\mathrm{2},{f}\left({f}\left(\mathrm{2}\right)\right)=\mathrm{2}\:\Rightarrow\mathrm{2}+\mathrm{2}=\mathrm{4}=\mathrm{2}^{\mathrm{2}} \\ $$ | ||