Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 218221 by Tawa11 last updated on 01/Apr/25

Commented by Tawa11 last updated on 01/Apr/25

  Ground is rough But resistance not given  how come sir.

$$ \\ $$Ground is rough But resistance not given how come sir.

Commented by mr W last updated on 02/Apr/25

similar to the question i asked you   in Q218030

$${similar}\:{to}\:{the}\:{question}\:{i}\:{asked}\:{you}\: \\ $$$${in}\:{Q}\mathrm{218030} \\ $$

Commented by mr W last updated on 02/Apr/25

acc. to that solved question what′s  your answer to this question?

$${acc}.\:{to}\:{that}\:{solved}\:{question}\:{what}'{s} \\ $$$${your}\:{answer}\:{to}\:{this}\:{question}? \\ $$

Commented by Tawa11 last updated on 02/Apr/25

Yes sir.  That is why I posted this sir.  For help.

$$\mathrm{Yes}\:\mathrm{sir}. \\ $$$$\mathrm{That}\:\mathrm{is}\:\mathrm{why}\:\mathrm{I}\:\mathrm{posted}\:\mathrm{this}\:\mathrm{sir}. \\ $$$$\mathrm{For}\:\mathrm{help}. \\ $$

Commented by Tawa11 last updated on 02/Apr/25

Tension  =  ((2mg)/(0.5))  × 0.1  =  0.4mg  Friction  =  0.8mg  Permanent.

$$\mathrm{Tension}\:\:=\:\:\frac{\mathrm{2mg}}{\mathrm{0}.\mathrm{5}}\:\:×\:\mathrm{0}.\mathrm{1}\:\:=\:\:\mathrm{0}.\mathrm{4mg} \\ $$$$\mathrm{Friction}\:\:=\:\:\mathrm{0}.\mathrm{8mg} \\ $$$$\mathrm{Permanent}. \\ $$

Commented by mr W last updated on 02/Apr/25

why not   Tension = ((2mg)/(0.5))×0.2=0.8mg  Friction = 0.09mg  then instantaneous?

$${why}\:{not}\: \\ $$$${Tension}\:=\:\frac{\mathrm{2}{mg}}{\mathrm{0}.\mathrm{5}}×\mathrm{0}.\mathrm{2}=\mathrm{0}.\mathrm{8}{mg} \\ $$$${Friction}\:=\:\mathrm{0}.\mathrm{09}{mg} \\ $$$${then}\:{instantaneous}? \\ $$

Commented by mr W last updated on 03/Apr/25

i think the question doesn′t have an  unique answer.

$${i}\:{think}\:{the}\:{question}\:{doesn}'{t}\:{have}\:{an} \\ $$$${unique}\:{answer}. \\ $$

Answered by mr W last updated on 02/Apr/25

Commented by mr W last updated on 04/Apr/25

say ∣BC∣=x  f=friction force (=μmg)  k=(λ/l_0 )=((2mg)/l_0 )  v=1.4 m/s  KE_B −PE_C =work done by friction  ((mv^2 )/2)−((kx^2 )/2)=fx=μmgx  ((mv^2 )/2)−((2mgx^2 )/(2l_0 ))=μmgx  (x^2 /l_0 )+μx−(v^2 /(2g))=0  ⇒x=(−μ+(√(μ^2 +((2v^2 )/(gl_0 )))))(l_0 /2)  tension in string  T=kx=((2mg)/l_0 )×(−μ+(√(μ^2 +((2v^2 )/(gl_0 )))))(l_0 /2)     =(−μ+(√(μ^2 +((2v^2 )/(gl_0 )))))mg  if T>f, particle will move further.  if T≤f, particle rests permanently.  T−f=(−2μ+(√(μ^2 +((2v^2 )/(gl_0 )))))mg  −2μ+(√(μ^2 +((2v^2 )/(gl_0 ))))=0  ⇒μ=(√((2v^2 )/(3gl_0 )))=(√((2×1.4^2 )/(3×9.81×0.5)))≈0.516  if μ<0.516, position of rest is   instantaneous. if μ≥0.516, position  of rest is permanent.    since μ is unknown in question,  we can not uniquely determine if  the position of rest is permanent  or instantaneous.

$${say}\:\mid{BC}\mid={x} \\ $$$${f}={friction}\:{force}\:\left(=\mu{mg}\right) \\ $$$${k}=\frac{\lambda}{{l}_{\mathrm{0}} }=\frac{\mathrm{2}{mg}}{{l}_{\mathrm{0}} } \\ $$$${v}=\mathrm{1}.\mathrm{4}\:{m}/{s} \\ $$$${KE}_{{B}} −{PE}_{{C}} ={work}\:{done}\:{by}\:{friction} \\ $$$$\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}−\frac{{kx}^{\mathrm{2}} }{\mathrm{2}}={fx}=\mu{mgx} \\ $$$$\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{2}{mgx}^{\mathrm{2}} }{\mathrm{2}{l}_{\mathrm{0}} }=\mu{mgx} \\ $$$$\frac{{x}^{\mathrm{2}} }{{l}_{\mathrm{0}} }+\mu{x}−\frac{{v}^{\mathrm{2}} }{\mathrm{2}{g}}=\mathrm{0} \\ $$$$\Rightarrow{x}=\left(−\mu+\sqrt{\mu^{\mathrm{2}} +\frac{\mathrm{2}{v}^{\mathrm{2}} }{{gl}_{\mathrm{0}} }}\right)\frac{{l}_{\mathrm{0}} }{\mathrm{2}} \\ $$$${tension}\:{in}\:{string} \\ $$$${T}={kx}=\frac{\mathrm{2}{mg}}{{l}_{\mathrm{0}} }×\left(−\mu+\sqrt{\mu^{\mathrm{2}} +\frac{\mathrm{2}{v}^{\mathrm{2}} }{{gl}_{\mathrm{0}} }}\right)\frac{{l}_{\mathrm{0}} }{\mathrm{2}} \\ $$$$\:\:\:=\left(−\mu+\sqrt{\mu^{\mathrm{2}} +\frac{\mathrm{2}{v}^{\mathrm{2}} }{{gl}_{\mathrm{0}} }}\right){mg} \\ $$$${if}\:{T}>{f},\:{particle}\:{will}\:{move}\:{further}. \\ $$$${if}\:{T}\leqslant{f},\:{particle}\:{rests}\:{permanently}. \\ $$$${T}−{f}=\left(−\mathrm{2}\mu+\sqrt{\mu^{\mathrm{2}} +\frac{\mathrm{2}{v}^{\mathrm{2}} }{{gl}_{\mathrm{0}} }}\right){mg} \\ $$$$−\mathrm{2}\mu+\sqrt{\mu^{\mathrm{2}} +\frac{\mathrm{2}{v}^{\mathrm{2}} }{{gl}_{\mathrm{0}} }}=\mathrm{0} \\ $$$$\Rightarrow\mu=\sqrt{\frac{\mathrm{2}{v}^{\mathrm{2}} }{\mathrm{3}{gl}_{\mathrm{0}} }}=\sqrt{\frac{\mathrm{2}×\mathrm{1}.\mathrm{4}^{\mathrm{2}} }{\mathrm{3}×\mathrm{9}.\mathrm{81}×\mathrm{0}.\mathrm{5}}}\approx\mathrm{0}.\mathrm{516} \\ $$$${if}\:\mu<\mathrm{0}.\mathrm{516},\:{position}\:{of}\:{rest}\:{is}\: \\ $$$${instantaneous}.\:{if}\:\mu\geqslant\mathrm{0}.\mathrm{516},\:{position} \\ $$$${of}\:{rest}\:{is}\:{permanent}. \\ $$$$ \\ $$$${since}\:\mu\:{is}\:{unknown}\:{in}\:{question}, \\ $$$${we}\:{can}\:{not}\:{uniquely}\:{determine}\:{if} \\ $$$${the}\:{position}\:{of}\:{rest}\:{is}\:{permanent} \\ $$$${or}\:{instantaneous}. \\ $$

Commented by Tawa11 last updated on 02/Apr/25

Commented by Tawa11 last updated on 02/Apr/25

Sir, see ∣BC∣ = 0.1.  Is this approach correct?.  This will tally with your working sir.  If ∣BC∣ ≤ 0.13m   it is permanent.

$$\mathrm{Sir},\:\mathrm{see}\:\mid\mathrm{BC}\mid\:=\:\mathrm{0}.\mathrm{1}. \\ $$$$\mathrm{Is}\:\mathrm{this}\:\mathrm{approach}\:\mathrm{correct}?. \\ $$$$\mathrm{This}\:\mathrm{will}\:\mathrm{tally}\:\mathrm{with}\:\mathrm{your}\:\mathrm{working}\:\mathrm{sir}. \\ $$$$\mathrm{If}\:\mid\mathrm{BC}\mid\:\leqslant\:\mathrm{0}.\mathrm{13m}\:\:\:\mathrm{it}\:\mathrm{is}\:\mathrm{permanent}. \\ $$

Commented by mr W last updated on 03/Apr/25

i asked you what you got, but you  answered me what an other person  did and you are not sure if he  or she is right. i have showed my  complete working with all steps  which you can follow and check to  make your own judge.  as i have said with given conditions  the question doesn′t have an unique  answer. i have showed why.  in the solution you presented above  a friction coefficient μ=0.8 is  taken, but this is not given in the  original question. in this case how  can i answer you if the approach   is correct? why didn′t he/she take   μ=0.1? then he/she would have   got a totally different result and   say that the stop is instantaneous.

$${i}\:{asked}\:{you}\:{what}\:{you}\:{got},\:{but}\:{you} \\ $$$${answered}\:{me}\:{what}\:{an}\:{other}\:{person} \\ $$$${did}\:{and}\:{you}\:{are}\:{not}\:{sure}\:{if}\:{he} \\ $$$${or}\:{she}\:{is}\:{right}.\:{i}\:{have}\:{showed}\:{my} \\ $$$${complete}\:{working}\:{with}\:{all}\:{steps} \\ $$$${which}\:{you}\:{can}\:{follow}\:{and}\:{check}\:{to} \\ $$$${make}\:{your}\:{own}\:{judge}. \\ $$$${as}\:{i}\:{have}\:{said}\:{with}\:{given}\:{conditions} \\ $$$${the}\:{question}\:{doesn}'{t}\:{have}\:{an}\:{unique} \\ $$$${answer}.\:{i}\:{have}\:{showed}\:{why}. \\ $$$${in}\:{the}\:{solution}\:{you}\:{presented}\:{above} \\ $$$${a}\:{friction}\:{coefficient}\:\mu=\mathrm{0}.\mathrm{8}\:{is} \\ $$$${taken},\:{but}\:\underline{{this}\:{is}\:{not}\:{given}\:{in}\:{the}} \\ $$$$\underline{{original}\:{question}}.\:{in}\:{this}\:{case}\:{how} \\ $$$${can}\:{i}\:{answer}\:{you}\:{if}\:{the}\:{approach}\: \\ $$$${is}\:{correct}?\:{why}\:{didn}'{t}\:{he}/{she}\:{take}\: \\ $$$$\mu=\mathrm{0}.\mathrm{1}?\:{then}\:{he}/{she}\:{would}\:{have}\: \\ $$$${got}\:{a}\:{totally}\:{different}\:{result}\:{and}\: \\ $$$${say}\:{that}\:{the}\:{stop}\:{is}\:{instantaneous}. \\ $$

Commented by Tawa11 last updated on 03/Apr/25

Sir,  I am only showing you sir.  After I see your solution.  I see the mistake I also made.  I followed their concept before.  But I understand your point sir.  And I asked the question because  I doubt their workings.    I just need to show you that you are  right since I have their duplicate workings.  I only doubt their workings.    Thanks for your time sir

$$\mathrm{Sir}, \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{only}\:\mathrm{showing}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{After}\:\mathrm{I}\:\mathrm{see}\:\mathrm{your}\:\mathrm{solution}. \\ $$$$\mathrm{I}\:\mathrm{see}\:\mathrm{the}\:\mathrm{mistake}\:\mathrm{I}\:\mathrm{also}\:\mathrm{made}. \\ $$$$\mathrm{I}\:\mathrm{followed}\:\mathrm{their}\:\mathrm{concept}\:\mathrm{before}. \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{understand}\:\mathrm{your}\:\mathrm{point}\:\mathrm{sir}. \\ $$$$\mathrm{And}\:\mathrm{I}\:\mathrm{asked}\:\mathrm{the}\:\mathrm{question}\:\mathrm{because} \\ $$$$\mathrm{I}\:\mathrm{doubt}\:\mathrm{their}\:\mathrm{workings}. \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{just}\:\mathrm{need}\:\mathrm{to}\:\mathrm{show}\:\mathrm{you}\:\mathrm{that}\:\mathrm{you}\:\mathrm{are} \\ $$$$\mathrm{right}\:\mathrm{since}\:\mathrm{I}\:\mathrm{have}\:\mathrm{their}\:\mathrm{duplicate}\:\mathrm{workings}. \\ $$$$\mathrm{I}\:\mathrm{only}\:\mathrm{doubt}\:\mathrm{their}\:\mathrm{workings}. \\ $$$$ \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 03/Apr/25

ok. now you know that the problem  lies in the question itself.

$${ok}.\:{now}\:{you}\:{know}\:{that}\:{the}\:{problem} \\ $$$${lies}\:{in}\:{the}\:{question}\:{itself}. \\ $$

Commented by Tawa11 last updated on 03/Apr/25

Yes sir. Clearly seen.

$$\mathrm{Yes}\:\mathrm{sir}.\:\mathrm{Clearly}\:\mathrm{seen}. \\ $$

Commented by Tawa11 last updated on 03/Apr/25

God bless you more sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com