Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 218030 by Tawa11 last updated on 26/Mar/25

Commented by mr W last updated on 26/Mar/25

the many watermarks are terrible!

$${the}\:{many}\:{watermarks}\:{are}\:{terrible}! \\ $$

Commented by mr W last updated on 26/Mar/25

see Q216110

$${see}\:{Q}\mathrm{216110} \\ $$

Commented by Tawa11 last updated on 26/Mar/25

Done sir.  Thanks sir.  I appreciate.

$$\mathrm{Done}\:\mathrm{sir}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$

Commented by mr W last updated on 26/Mar/25

what did you get ∣BC∣=?

$${what}\:{did}\:{you}\:{get}\:\mid{BC}\mid=? \\ $$

Commented by Tawa11 last updated on 26/Mar/25

0.4m  sir

$$\mathrm{0}.\mathrm{4m}\:\:\mathrm{sir} \\ $$

Answered by mr W last updated on 02/Apr/25

Commented by Tawa11 last updated on 02/Apr/25

Thanks sir.  I appreciate.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$

Commented by mr W last updated on 02/Apr/25

l_0 =1.2 m  λ=40 N  k=(λ/l_0 )=((40)/(1.2))=((100)/3) N/m  at point A:  l_1 =4 m  Δl_1 =4−1.2=2.8 m  PE_1 =((kΔl_1 ^2 )/2)  at point B:  l_2 =2 m  Δl_2 =2−1.2=0.8 m  PE_2 =((kΔl_2 ^2 )/2)  from A to B:  distance moved: l_1 +l_2 =6 m  friction force f=μmg  f(l_1 +l_2 )=((k(Δl_1 ^2 −Δl_2 ^2 ))/2)  ⇒f=((k(Δl_1 ^2 −Δl_2 ^2 ))/(2(l_1 +l_2 )))     =((100(2.8^2 −0.8^2 ))/(3×2×6))=20 N  or  μ=(f/(mg))=((20)/(7×9.81))≈0.291    at point B:  tension in string:  T_2 =kΔl_2 =((100×0.8)/3)=26.67 N>f  ⇒particle will move towards left.    say ∣OC∣=1.2+x with 0<x<0.8,   i.e. ∣BC∣=0.8−x  Δl_3 =x  PE_3 =((kx^2 )/2)  ((k(Δl_2 ^2 −x^2 ))/2)=f(0.8−x)  ((100(0.8^2 −x^2 ))/(3×2))=20(0.8−x)  5x^2 −6x+1.6=0  ⇒x=((3−(√(9−5×1.6)))/5)=0.4 m   ⇒∣BC∣=0.8−0.4=0.4 m  T_3 =kx=((100×0.4)/3)≈13.3 N<f=20 N  at point C particle doesn′t move  further.

$${l}_{\mathrm{0}} =\mathrm{1}.\mathrm{2}\:{m} \\ $$$$\lambda=\mathrm{40}\:{N} \\ $$$${k}=\frac{\lambda}{{l}_{\mathrm{0}} }=\frac{\mathrm{40}}{\mathrm{1}.\mathrm{2}}=\frac{\mathrm{100}}{\mathrm{3}}\:{N}/{m} \\ $$$${at}\:{point}\:{A}: \\ $$$${l}_{\mathrm{1}} =\mathrm{4}\:{m} \\ $$$$\Delta{l}_{\mathrm{1}} =\mathrm{4}−\mathrm{1}.\mathrm{2}=\mathrm{2}.\mathrm{8}\:{m} \\ $$$${PE}_{\mathrm{1}} =\frac{{k}\Delta{l}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}} \\ $$$${at}\:{point}\:{B}: \\ $$$${l}_{\mathrm{2}} =\mathrm{2}\:{m} \\ $$$$\Delta{l}_{\mathrm{2}} =\mathrm{2}−\mathrm{1}.\mathrm{2}=\mathrm{0}.\mathrm{8}\:{m} \\ $$$${PE}_{\mathrm{2}} =\frac{{k}\Delta{l}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{2}} \\ $$$${from}\:{A}\:{to}\:{B}: \\ $$$${distance}\:{moved}:\:{l}_{\mathrm{1}} +{l}_{\mathrm{2}} =\mathrm{6}\:{m} \\ $$$${friction}\:{force}\:{f}=\mu{mg} \\ $$$${f}\left({l}_{\mathrm{1}} +{l}_{\mathrm{2}} \right)=\frac{{k}\left(\Delta{l}_{\mathrm{1}} ^{\mathrm{2}} −\Delta{l}_{\mathrm{2}} ^{\mathrm{2}} \right)}{\mathrm{2}} \\ $$$$\Rightarrow{f}=\frac{{k}\left(\Delta{l}_{\mathrm{1}} ^{\mathrm{2}} −\Delta{l}_{\mathrm{2}} ^{\mathrm{2}} \right)}{\mathrm{2}\left({l}_{\mathrm{1}} +{l}_{\mathrm{2}} \right)} \\ $$$$\:\:\:=\frac{\mathrm{100}\left(\mathrm{2}.\mathrm{8}^{\mathrm{2}} −\mathrm{0}.\mathrm{8}^{\mathrm{2}} \right)}{\mathrm{3}×\mathrm{2}×\mathrm{6}}=\mathrm{20}\:{N} \\ $$$${or} \\ $$$$\mu=\frac{{f}}{{mg}}=\frac{\mathrm{20}}{\mathrm{7}×\mathrm{9}.\mathrm{81}}\approx\mathrm{0}.\mathrm{291} \\ $$$$ \\ $$$${at}\:{point}\:{B}: \\ $$$${tension}\:{in}\:{string}: \\ $$$${T}_{\mathrm{2}} ={k}\Delta{l}_{\mathrm{2}} =\frac{\mathrm{100}×\mathrm{0}.\mathrm{8}}{\mathrm{3}}=\mathrm{26}.\mathrm{67}\:{N}>{f} \\ $$$$\Rightarrow{particle}\:{will}\:{move}\:{towards}\:{left}. \\ $$$$ \\ $$$${say}\:\mid{OC}\mid=\mathrm{1}.\mathrm{2}+{x}\:{with}\:\mathrm{0}<{x}<\mathrm{0}.\mathrm{8},\: \\ $$$${i}.{e}.\:\mid{BC}\mid=\mathrm{0}.\mathrm{8}−{x} \\ $$$$\Delta{l}_{\mathrm{3}} ={x} \\ $$$${PE}_{\mathrm{3}} =\frac{{kx}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{k}\left(\Delta{l}_{\mathrm{2}} ^{\mathrm{2}} −{x}^{\mathrm{2}} \right)}{\mathrm{2}}={f}\left(\mathrm{0}.\mathrm{8}−{x}\right) \\ $$$$\frac{\mathrm{100}\left(\mathrm{0}.\mathrm{8}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)}{\mathrm{3}×\mathrm{2}}=\mathrm{20}\left(\mathrm{0}.\mathrm{8}−{x}\right) \\ $$$$\mathrm{5}{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{1}.\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{3}−\sqrt{\mathrm{9}−\mathrm{5}×\mathrm{1}.\mathrm{6}}}{\mathrm{5}}=\mathrm{0}.\mathrm{4}\:{m}\: \\ $$$$\Rightarrow\mid{BC}\mid=\mathrm{0}.\mathrm{8}−\mathrm{0}.\mathrm{4}=\mathrm{0}.\mathrm{4}\:{m} \\ $$$${T}_{\mathrm{3}} ={kx}=\frac{\mathrm{100}×\mathrm{0}.\mathrm{4}}{\mathrm{3}}\approx\mathrm{13}.\mathrm{3}\:{N}<{f}=\mathrm{20}\:{N} \\ $$$${at}\:{point}\:{C}\:{particle}\:{doesn}'{t}\:{move} \\ $$$${further}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com