Question Number 218013 by Tawa11 last updated on 25/Mar/25 | ||
![]() | ||
Answered by mr W last updated on 26/Mar/25 | ||
![]() | ||
$$\left.{a}\right) \\ $$$${AP}={BP}={l}=\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{2}.\mathrm{4}^{\mathrm{2}} }=\mathrm{2}.\mathrm{6}\:{m} \\ $$$${l}_{\mathrm{0}} =\mathrm{2}\:{m} \\ $$$$\Delta{l}={l}−{l}_{\mathrm{0}} =\mathrm{2}.\mathrm{6}−\mathrm{2}=\mathrm{0}.\mathrm{6}\:{m} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}.\mathrm{6}} \\ $$$$\mathrm{2}{T}\:\mathrm{sin}\:\theta={mg} \\ $$$$\mathrm{2}{T}×\frac{\mathrm{1}}{\mathrm{2}.\mathrm{6}}={mg} \\ $$$$\Rightarrow{T}=\mathrm{1}.\mathrm{3}{mg} \\ $$$${T}=\frac{\lambda}{{l}_{\mathrm{0}} }\Delta{l}=\frac{\mathrm{637}}{\mathrm{2}}×\mathrm{0}.\mathrm{6}=\mathrm{1}.\mathrm{3}{mg} \\ $$$$\Rightarrow{m}=\frac{\mathrm{637}×\mathrm{0}.\mathrm{6}}{\mathrm{2}×\mathrm{1}.\mathrm{3}×\mathrm{9}.\mathrm{81}}\approx\mathrm{15}\:{kg} \\ $$$$\left.{b}\right) \\ $$$${l}=\sqrt{\mathrm{0}.\mathrm{7}^{\mathrm{2}} +\mathrm{2}.\mathrm{4}^{\mathrm{2}} }=\mathrm{2}.\mathrm{5}\:{m} \\ $$$$\Delta{l}_{\mathrm{1}} =\mathrm{2}.\mathrm{5}−\mathrm{2}=\mathrm{0}.\mathrm{5}\:{m} \\ $$$$\mathrm{sin}\:\theta_{\mathrm{1}} =\frac{\mathrm{0}.\mathrm{7}}{\:\mathrm{2}.\mathrm{5}}=\mathrm{0}.\mathrm{28} \\ $$$${T}_{\mathrm{1}} =\frac{\lambda}{{l}_{\mathrm{0}} }\Delta{l}_{\mathrm{1}} \\ $$$${ma}={mg}−\mathrm{2}{T}_{\mathrm{1}} \:\mathrm{sin}\:\theta_{\mathrm{1}} \\ $$$${a}={g}−\frac{\mathrm{2}{T}_{\mathrm{1}} \:\mathrm{sin}\:\theta_{\mathrm{1}} }{{m}} \\ $$$$\:\:=\left(\mathrm{1}−\frac{\Delta{l}_{\mathrm{1}} \:\mathrm{sin}\:\theta_{\mathrm{1}} }{\Delta{l}\:\mathrm{sin}\:\theta}\right){g} \\ $$$$\:\:=\left(\mathrm{1}−\frac{\mathrm{0}.\mathrm{5}×\mathrm{0}.\mathrm{28}×\mathrm{2}.\mathrm{6}}{\mathrm{0}.\mathrm{6}×\mathrm{1}}\right)×\mathrm{9}.\mathrm{81}\approx\mathrm{3}.\mathrm{86}\:{m}/{s}^{\mathrm{2}} \\ $$ | ||
Commented by Tawa11 last updated on 26/Mar/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$ | ||
Commented by Tawa11 last updated on 26/Mar/25 | ||
![]() | ||
$$\mathrm{I}\:\mathrm{have}\:\mathrm{seen}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{their}\:\mathrm{work}\:\mathrm{sir}. \\ $$$$\mathrm{They}\:\mathrm{used}\:\:\mathrm{m}\:\:=\:\:\mathrm{12}.\mathrm{5kg}. \\ $$$$\mathrm{They}\:\mathrm{also}\:\mathrm{proved}\:\:\mathrm{m}\:=\:\mathrm{15kg}. \\ $$$$\mathrm{so},\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{why}\:\mathrm{they}\:\mathrm{now}\:\mathrm{used}\:\mathrm{m}\:=\:\mathrm{12}.\mathrm{5kg} \\ $$$$\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{acceleration}.? \\ $$$$\mathrm{silly}\:\mathrm{error} \\ $$ | ||
Commented by Tawa11 last updated on 26/Mar/25 | ||
![]() | ||
Commented by mr W last updated on 26/Mar/25 | ||
![]() | ||
$${we}\:{even}\:{didn}'{t}\:{need}\:{m}\:{to}\:{find}\:{a}: \\ $$$${a}=\left(\mathrm{1}−\frac{\Delta{l}_{\mathrm{1}} \:\mathrm{sin}\:\theta_{\mathrm{1}} }{\Delta{l}\:\mathrm{sin}\:\theta}\right){g} \\ $$ | ||
Commented by Tawa11 last updated on 26/Mar/25 | ||
![]() | ||
$$\mathrm{Yes},\:\mathrm{I}\:\mathrm{observed}\:\mathrm{it}\:\mathrm{in}\:\mathrm{your}\:\mathrm{workings}\:\mathrm{sir}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{always}\:\mathrm{sir}. \\ $$ | ||