Question Number 217631 by mnjuly1970 last updated on 17/Mar/25 | ||
![]() | ||
Commented by mnjuly1970 last updated on 17/Mar/25 | ||
![]() | ||
$$\:{yes}\:.\:{that}'{s}\:{right}.{thanks}\:{alot}\:{sir} \\ $$ | ||
Answered by maths2 last updated on 17/Mar/25 | ||
![]() | ||
$${a}=\frac{\mathrm{1}}{{a}'}=\frac{\mathrm{1}}{{sin}\left(\mathrm{10}\right)};{b}=\frac{\mathrm{1}}{{sin}\left(\mathrm{70}\right)}=\frac{\mathrm{1}}{{b}'} \\ $$$${c}=\frac{\mathrm{1}}{{sin}\left(\mathrm{50}\right)}=\frac{\mathrm{1}}{{c}'} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left(\mathrm{10}\right)}+\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left(\mathrm{70}\right)}+\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left(\mathrm{50}\right)} \\ $$$${sin}\left(\mathrm{10}.\mathrm{3}\right)={sin}\left(\mathrm{30}\right);{sin}\left(\mathrm{3}.\mathrm{70}\right)={sin}\left(\mathrm{210}\right)=−{sin}\left(\mathrm{30}\right) \\ $$$${sin}\left(\mathrm{3}.\mathrm{50}\right)={sin}\left(\mathrm{150}\right)={sin}\left(\mathrm{30}\right) \\ $$$${sin}\left(\mathrm{10}\right);{sin}\left(\mathrm{50}\right);−{sin}\left(\mathrm{70}\right)\:{root}\:{of} \\ $$$${sin}\left(\mathrm{3}{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Leftrightarrow−{sin}^{\mathrm{3}} \left({x}\right)+\mathrm{3}{sin}\left({x}\right)\left(\mathrm{1}−{sin}^{\mathrm{2}} \left({x}\right)\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Leftrightarrow{sin}^{\mathrm{3}} \left({x}\right)−\frac{\mathrm{3}}{\mathrm{4}}{sin}\left({x}\right)+\frac{\mathrm{1}}{\mathrm{8}}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{a}'^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}'^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}'^{\mathrm{2}} }=\frac{\left({a}'{b}'+{b}'{c}'+{c}'{a}'\right)^{\mathrm{2}} −\mathrm{2}{a}'{b}'{c}'\left({a}'+{b}'+{c}'\right)}{\left({a}'{b}'{c}'\right)^{\mathrm{2}} } \\ $$$$=\frac{\left(−\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }{\left(−\frac{\mathrm{1}}{\mathrm{8}}\right)^{\mathrm{2}} }=\mathrm{36}\:{correcte}\:{answer}\:{is}\:{C} \\ $$$$ \\ $$$$ \\ $$ | ||