Question Number 217506 by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
Commented by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{2}.\mathrm{5m}/\mathrm{s}^{\mathrm{2}} \:? \\ $$ | ||
Commented by mr W last updated on 15/Mar/25 | ||
![]() | ||
$${yes},\:{if}\:{taken}\:{g}=\mathrm{10}\:{m}/{s}^{\mathrm{2}} . \\ $$$${what}\:{are}\:{the}\:{accelerations}\:{of}\:{the} \\ $$$${pulleys}? \\ $$ | ||
Commented by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{Sir},\:\mathrm{I}\:\mathrm{only}\:\mathrm{solve}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{block}. \\ $$$$\mathrm{Show}\:\mathrm{me}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{pulleys}\:\mathrm{sir}. \\ $$ | ||
Commented by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{sir}. \\ $$$$\mathrm{Q217504},\:\mathrm{am}\:\mathrm{I}\:\mathrm{correct}? \\ $$ | ||
Commented by mr W last updated on 15/Mar/25 | ||
![]() | ||
$${i}\:{don}'{t}\:{understand}\:{the}\:{question}. \\ $$ | ||
Commented by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{Hahahahahaha}. \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{question}\:\mathrm{is}\:\mathrm{missing}\:\mathrm{a} \\ $$$$\mathrm{parameter}. \\ $$ | ||
Commented by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$ | ||
Answered by mr W last updated on 15/Mar/25 | ||
![]() | ||
Commented by mr W last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{2}{F}_{\mathrm{1}} ={F}=\mathrm{100}\:\Rightarrow{F}_{\mathrm{1}} =\mathrm{50}\:{N} \\ $$$$\mathrm{2}{F}_{\mathrm{2}} ={F}_{\mathrm{1}} =\mathrm{50}\:\Rightarrow{F}_{\mathrm{2}} =\mathrm{25}\:{N} \\ $$$${with}\:{g}=\mathrm{10}\:{m}/{s}^{\mathrm{2}} \\ $$$${F}_{\mathrm{1}} −{m}_{\mathrm{1}} {g}={m}_{\mathrm{1}} {a}_{\mathrm{1}} \\ $$$${a}_{\mathrm{1}} =\frac{{F}_{\mathrm{1}} −{m}_{\mathrm{1}} {g}}{{m}_{\mathrm{1}} } \\ $$$${a}_{\mathrm{1}} =\frac{\mathrm{50}−\mathrm{1}×\mathrm{10}}{\mathrm{1}}=\mathrm{40}\:{m}/{s}^{\mathrm{2}} \:\left(\uparrow\right) \\ $$$${similarly} \\ $$$${a}_{\mathrm{2}} =\frac{\mathrm{25}−\mathrm{2}×\mathrm{10}}{\mathrm{2}}=\mathrm{2}.\mathrm{5}\:{m}/{s}^{\mathrm{2}} \:\:\left(\uparrow\right) \\ $$$${a}_{\mathrm{3}} =\frac{\mathrm{25}−\mathrm{3}×\mathrm{10}}{\mathrm{3}}=−\frac{\mathrm{5}}{\mathrm{3}}\:{m}/{s}^{\mathrm{2}} \:\:\left(\downarrow\right) \\ $$$$ \\ $$$${A}_{\mathrm{2}} −{a}_{\mathrm{2}} ={a}_{\mathrm{3}} −{A}_{\mathrm{2}} \: \\ $$$$\Rightarrow{A}_{\mathrm{2}} =\frac{{a}_{\mathrm{2}} +{a}_{\mathrm{3}} }{\mathrm{2}}=\frac{\mathrm{2}.\mathrm{5}−\frac{\mathrm{5}}{\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{5}}{\mathrm{12}}\:{m}/{s}^{\mathrm{2}} \:\:\left(\uparrow\right) \\ $$$$ \\ $$$${A}_{\mathrm{1}} −{a}_{\mathrm{1}} ={A}_{\mathrm{2}} −{A}_{\mathrm{1}} \\ $$$$\Rightarrow{A}_{\mathrm{1}} =\frac{{a}_{\mathrm{1}} +{A}_{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{40}+\frac{\mathrm{5}}{\mathrm{12}}}{\mathrm{2}}=\mathrm{20}\frac{\mathrm{5}}{\mathrm{24}}\:{m}/{s}^{\mathrm{2}} \:\:\left(\uparrow\right) \\ $$ | ||
Commented by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{you}\:\mathrm{sir}. \\ $$ | ||
Commented by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{For}\:\mathrm{mass}\:\mathrm{3kg}\:\:=\:\:\mathrm{5ms}^{−\mathrm{1}} \\ $$$$\mathrm{For}\:\mathrm{mas}\:\mathrm{2kg}\:\:=\:\:\mathrm{2}.\mathrm{5}\:\mathrm{ms}^{−\mathrm{1}} \\ $$$$\mathrm{for}\:\mathrm{mass}\:\mathrm{1kg}\:\:=\:\:\mathrm{3}.\mathrm{75ms}^{−\mathrm{1}} \\ $$ | ||
Commented by mr W last updated on 15/Mar/25 | ||
![]() | ||
$${wrong}! \\ $$ | ||
Commented by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{I}\:\mathrm{will}\:\mathrm{try}\:\mathrm{more} \\ $$ | ||
Commented by Tawa11 last updated on 16/Mar/25 | ||
![]() | ||
$$\mathrm{1}.\mathrm{8}\:\mathrm{ms}^{−\:\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{this}\:\mathrm{correct}\:\mathrm{sir}. \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{3kg},\:\mathrm{2kg}\:\mathrm{and}\:\mathrm{1kg}\:\:\mathrm{pulleys} \\ $$ | ||
Commented by mr W last updated on 16/Mar/25 | ||
![]() | ||
$${no}!\:{how}\:{can}\:{they}\:{all}\:{have}\:{the}\:{same} \\ $$$${acceleration}?\:{they}\:{are}\:{not}\:{fixed} \\ $$$${with}\:{each}\:{other}. \\ $$ | ||
Commented by Tawa11 last updated on 16/Mar/25 | ||
![]() | ||
$$\mathrm{noted}\:\mathrm{sir}. \\ $$ | ||
Commented by Tawa11 last updated on 16/Mar/25 | ||
![]() | ||
$$\mathrm{Please}\:\mathrm{solve}\:\mathrm{sir}. \\ $$ | ||
Commented by mr W last updated on 16/Mar/25 | ||
![]() | ||
$${i}\:{have}\:{given}\:{an}\:{example}\:{above}.\:{if} \\ $$$${you}\:{have}\:{understood}\:{this},\:{i}\:{think}\: \\ $$$${you}\:{should}\:{be}\:{able}\:{to}\:{solve}\:{it}\:{by} \\ $$$${yourself}.\:{but}\:{i}\:{have}\:{opened}\:{a}\:{new} \\ $$$${thread}.\:{you}\:{can}\:{follow}\:{the}\:{question} \\ $$$${and}\:{solution}\:{there}. \\ $$ | ||
Commented by Tawa11 last updated on 16/Mar/25 | ||
![]() | ||
$$\mathrm{you}\:\mathrm{have}\:\mathrm{not}\:\mathrm{solve}\:\mathrm{Q217565}\:\mathrm{sir} \\ $$ | ||
Commented by mr W last updated on 16/Mar/25 | ||
![]() | ||
$${i}\:{know}.\:{but}\:{it}\:{is}\:{solved}!\:{you}\:{can}\: \\ $$$${compare}\:{with}\:{your}\:{own}\:{solution}. \\ $$ | ||
Commented by Tawa11 last updated on 16/Mar/25 | ||
![]() | ||
Commented by Tawa11 last updated on 16/Mar/25 | ||
![]() | ||
Commented by Tawa11 last updated on 16/Mar/25 | ||
![]() | ||
$$\mathrm{Is}\:\mathrm{this}\:\mathrm{correct}\:\mathrm{now}\:\mathrm{sir}? \\ $$ | ||
Commented by mr W last updated on 17/Mar/25 | ||
![]() | ||
$${since}\:{you}\:{take}\:{F}_{\mathrm{1}} ={F}/\mathrm{2},\:{F}_{\mathrm{2}} ={F}_{\mathrm{1}} /\mathrm{2},\: \\ $$$${the}\:{rest}\:{must}\:{be}\:{wrong}.\:{these}\:{are}\: \\ $$$${such}\:{basic}\:{things}!\:{even}\:{when}\:{the}\: \\ $$$${objects}\:{are}\:{in}\:{rest},\:{we}\:{have}\:{that} \\ $$$${F}=\mathrm{2}{F}_{\mathrm{1}} +{M}_{\mathrm{1}} {g}\:>\:\mathrm{2}{F}_{\mathrm{1}} .\:{how}\:{can}\:{you}\: \\ $$$${say}\:{F}_{\mathrm{1}} ={F}/\mathrm{2}? \\ $$ | ||
Commented by mr W last updated on 17/Mar/25 | ||
![]() | ||
$${it}\:{is}\:{assumed}\:{that}\:{there}\:{is}\:{no} \\ $$$${friction}\:{between}\:{the}\:{strings}\:{and} \\ $$$${the}\:{pulleys}.\:{in}\:{this}\:{case}\:{the}\:{pulley} \\ $$$${don}'{t}\:{rotate}.\:{otherwise}\:{you}\:{can}\:{not} \\ $$$${assume}\:{that}\:{the}\:{string}\:{on}\:{both}\:{sides} \\ $$$${of}\:{a}\:{pulley}\:{has}\:{the}\:{same}\:{tension},\:{but} \\ $$$${have}\:{assumed}\:{F}_{\mathrm{1},\:{left}} ={F}_{\mathrm{1},\:{right}} ={F}_{\mathrm{1}} , \\ $$$${therefore}\:{no}\:{friction}\:{and}\:{no}\: \\ $$$${rotation}\:{of}\:{pulleys}! \\ $$ | ||
Commented by Tawa11 last updated on 17/Mar/25 | ||
![]() | ||
$$\mathrm{Noted}\:\mathrm{sir}. \\ $$ | ||