Question Number 217447 by Tawa11 last updated on 14/Mar/25 | ||
![]() | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
$${question}\:{is}\:{wrong}.\:{the}\:{friction}\: \\ $$$${coefficient}\:{between}\:{cylinder}\:{and} \\ $$$${stick}\:{may}\:{not}\:{be}\:{the}\:{same}\:{as}\:{the} \\ $$$${friction}\:{coefficient}\:{between}\:{cylinder} \\ $$$${and}\:{plane}.\:{the}\:{former}\:{must}\:{be} \\ $$$${larger}\:{than}\:{the}\:{latter}!\:{i}\:{think}\:{this} \\ $$$${can}\:{be}\:{said}\:{even}\:{just}\:{by}\:{using}\:{your} \\ $$$${feeling}\:{without}\:{physics}\:{calculations}. \\ $$ | ||
Commented by Tawa11 last updated on 14/Mar/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$ | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
$${where}\:{did}\:{you}\:{have}\:{this}\:{question}? \\ $$$${do}\:{they}\:{have}\:{an}\:{answer}? \\ $$ | ||
Commented by Tawa11 last updated on 14/Mar/25 | ||
![]() | ||
$$\mathrm{Sir},\:\mathrm{I}\:\mathrm{will}\:\mathrm{confirm}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is}\:\mathrm{answer}\:\mathrm{now}. \\ $$ | ||
Commented by Tawa11 last updated on 14/Mar/25 | ||
![]() | ||
$$\mathrm{Sir},\:\mathrm{they}\:\mathrm{got}\:\:\:\:\frac{\mathrm{3}\:\mathrm{sin}\theta}{\mathrm{1}\:\:+\:\:\mathrm{cos}\theta} \\ $$ | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
$${then}\:{the}\:{question}\:{and}\:{diagram}\:{are} \\ $$$${wrong}. \\ $$$${if}\:{the}\:{question}\:{and}\:{the}\:{diagram}\:{were} \\ $$$${right},\:{then}\:{we}\:{had}: \\ $$ | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
$${the}\:{three}\:{forces}\:{must}\:{meet}\:{at}\:{the} \\ $$$${same}\:{point}\:{as}\:{shown}.\:{but}\:{they}\:{are} \\ $$$${not}\:{in}\:{equilibrium}! \\ $$$$\left({with}\:\mathrm{tan}\:\phi=\mu\right) \\ $$ | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
$${in}\:{this}\:{case},\:{such}\:{that}\:{equilibrium}\: \\ $$$${is}\:{possible},\:{the}\:{friction}\:{coefficients} \\ $$$${must}\:{be}\:{different}.\:{then}\:{we}\:{have}: \\ $$ | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
$$\mathrm{tan}\:\phi_{\mathrm{1}} =\mu_{\mathrm{1}} \\ $$$$\mathrm{tan}\:\phi_{\mathrm{2}} =\mu_{\mathrm{2}} \\ $$$$\theta=\mathrm{2}\phi_{\mathrm{2}} \:\Rightarrow\phi_{\mathrm{2}} =\frac{\theta}{\mathrm{2}} \\ $$$$\mu_{\mathrm{2}} =\mathrm{tan}^{−\mathrm{1}} \phi_{\mathrm{2}} =\mathrm{tan}^{−\mathrm{1}} \frac{\theta}{\mathrm{2}} \\ $$$$\phi_{\mathrm{1}} >\phi_{\mathrm{2}} \:\Rightarrow\mu_{\mathrm{1}} >\mu_{\mathrm{2}} \\ $$$$\frac{{R}_{\mathrm{1}} }{\mathrm{sin}\:\phi_{\mathrm{2}} }=\frac{{R}_{\mathrm{2}} }{\mathrm{sin}\:\phi_{\mathrm{1}} }=\frac{{Mg}}{\mathrm{sin}\:\left(\phi_{\mathrm{1}} −\phi_{\mathrm{2}} \right)} \\ $$$$\Rightarrow{R}_{\mathrm{1}} =\frac{\mathrm{sin}\:\phi_{\mathrm{2}} {Mg}}{\mathrm{sin}\:\left(\phi_{\mathrm{1}} −\phi_{\mathrm{2}} \right)} \\ $$$$\Rightarrow{R}_{\mathrm{2}} =\frac{\mathrm{sin}\:\phi_{\mathrm{1}} {Mg}}{\mathrm{sin}\:\left(\phi_{\mathrm{1}} −\phi_{\mathrm{2}} \right)} \\ $$$${N}_{\mathrm{1}} ={R}_{\mathrm{1}} \mathrm{cos}\:\phi_{\mathrm{1}} =\frac{{mg}}{\mathrm{2}} \\ $$$$\frac{\mathrm{cos}\:\phi_{\mathrm{1}} \:\mathrm{sin}\:\phi_{\mathrm{2}} {Mg}}{\mathrm{sin}\:\left(\phi_{\mathrm{1}} −\phi_{\mathrm{2}} \right)}=\frac{{mg}}{\mathrm{2}} \\ $$$${if}\:{M}={m}\:{as}\:{given} \\ $$$$\frac{\mathrm{cos}\:\phi_{\mathrm{1}} \:\mathrm{sin}\:\phi_{\mathrm{2}} }{\mathrm{sin}\:\left(\phi_{\mathrm{1}} −\phi_{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}\:\mathrm{cos}\:\phi_{\mathrm{1}} \mathrm{sin}\:\phi_{\mathrm{2}} =\mathrm{sin}\:\phi_{\mathrm{1}} \:\mathrm{cos}\:\phi_{\mathrm{2}} −\mathrm{cos}\:\phi_{\mathrm{1}} \:\mathrm{sin}\:\phi_{\mathrm{2}} \\ $$$$\mathrm{3}\:\mathrm{cos}\:\phi_{\mathrm{1}} \mathrm{sin}\:\phi_{\mathrm{2}} =\mathrm{sin}\:\phi_{\mathrm{1}} \:\mathrm{cos}\:\phi_{\mathrm{2}} \\ $$$$\mathrm{3}\:\mathrm{tan}\:\phi_{\mathrm{2}} =\mathrm{tan}\:\phi_{\mathrm{1}} \\ $$$$\Rightarrow\mathrm{3}\mu_{\mathrm{2}} =\mu_{\mathrm{1}} =\mathrm{3}\:\mathrm{tan}^{−\mathrm{1}} \frac{\theta}{\mathrm{2}} \\ $$ | ||
Commented by mr W last updated on 15/Mar/25 | ||
![]() | ||
$${what}\:{did}\:{they}\:{say}\:{as}\:{you}\:{told}\:{them} \\ $$$${that}\:{the}\:{question}\:{is}\:{wrong}\:{and} \\ $$$${therefore}\:{their}\:{answer}\:{is}\:{wrong}\:{too}? \\ $$ | ||
Commented by Tawa11 last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{They}\:\mathrm{admit}\:\mathrm{the}\:\mathrm{question}\:\mathrm{is}\:\mathrm{not}\:\mathrm{well} \\ $$$$\mathrm{contructed}\:\mathrm{sir}. \\ $$$$\mathrm{The}\:\mathrm{lecturer}\:\mathrm{said}\:\mathrm{he}\:\mathrm{will}\:\mathrm{change}\:\mathrm{it}. \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$ | ||
Commented by mr W last updated on 15/Mar/25 | ||
![]() | ||
$${so}\:{i}'{m}\:{right}.\:{but}\:{i}\:{wonder}\:{how}\:{they} \\ $$$${could}\:{get}\:{that}\:{answer}\:\frac{\mathrm{3}\:\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{cos}\:\theta} \\ $$$${nevertheless}. \\ $$ | ||
Answered by mr W last updated on 14/Mar/25 | ||
![]() | ||
$${if}\:{the}\:{question}\:{is}\:{modified}\:{like} \\ $$$${following},\:{then}\:{it}\:{can}\:{be}\:{solved}. \\ $$ | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
Commented by mr W last updated on 15/Mar/25 | ||
![]() | ||
Commented by mr W last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{tan}\:\phi=\mu \\ $$$${with}\:\mathrm{0}<\varphi<\frac{\pi}{\mathrm{2}} \\ $$$$\frac{{R}_{\mathrm{1}} }{\mathrm{sin}\:\left(\theta−\phi\right)}=\frac{{R}_{\mathrm{2}} }{\mathrm{sin}\:\left(\varphi−\theta+\mathrm{2}\phi\right)}=\frac{{Mg}}{\mathrm{sin}\:\left(\varphi−\phi\right)} \\ $$$${R}_{\mathrm{1}} =\frac{{Mg}\:\mathrm{sin}\:\left(\theta−\phi\right)}{\mathrm{sin}\:\left(\varphi−\phi\right)} \\ $$$${R}_{\mathrm{1}} \mathrm{cos}\:\left(\varphi+\phi\right)=\frac{{mg}}{\mathrm{2}} \\ $$$$\frac{{Mg}\:\mathrm{sin}\:\left(\theta−\phi\right)\:\mathrm{cos}\:\left(\varphi+\phi\right)}{\mathrm{sin}\:\left(\varphi−\phi\right)}=\frac{{mg}}{\mathrm{2}} \\ $$$${since}\:{M}={m}, \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\left(\theta−\phi\right)\:\mathrm{cos}\:\left(\varphi+\phi\right)}{\mathrm{sin}\:\left(\varphi−\phi\right)}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}\left(\mathrm{sin}\:\theta\:\mathrm{cos}\:\phi−\mathrm{cos}\:\theta\:\mathrm{sin}\:\phi\right)\left(\mathrm{cos}\:\varphi\:\mathrm{cos}\:\phi−\mathrm{sin}\:\varphi\:\mathrm{sin}\:\phi\right)=\mathrm{sin}\:\varphi\:\mathrm{cos}\:\phi−\mathrm{cos}\:\varphi\:\mathrm{sin}\:\phi \\ $$$$\mathrm{2}\left(\mathrm{tan}\:\theta−\mathrm{tan}\:\phi\right)\left(\mathrm{1}−\mathrm{tan}\:\varphi\:\mathrm{tan}\:\phi\right)=\left(\mathrm{tan}\:\varphi−\mathrm{tan}\:\phi\right)\sqrt{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi\right)} \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{tan}\:\theta−\mu\right)\left(\mathrm{1}−\mu\:\mathrm{tan}\:\varphi\right)−\left(\mathrm{tan}\:\varphi−\mu\right)\sqrt{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\left(\mathrm{1}+\mu^{\mathrm{2}} \right)}=\mathrm{0} \\ $$ | ||
Commented by Tawa11 last updated on 14/Mar/25 | ||
![]() | ||
$$\mathrm{Have}\:\mathrm{been}\:\mathrm{waiting}\:\mathrm{for}\:\mathrm{something}\:\mathrm{to} \\ $$$$\mathrm{drop}\:\mathrm{here},\:\mathrm{as}\:\mathrm{I}\:\mathrm{saw}\:\mathrm{empty}\:\mathrm{space}. \\ $$$$\mathrm{Hahahahahaha} \\ $$ | ||
Commented by Tawa11 last updated on 14/Mar/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$ | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
$${right}\:{or}\:{not}? \\ $$ | ||
Commented by Tawa11 last updated on 14/Mar/25 | ||
![]() | ||
$$\mathrm{Right}\:\mathrm{sir}. \\ $$ | ||