Question Number 217417 by peter frank last updated on 13/Mar/25 | ||
![]() | ||
Commented by mr W last updated on 13/Mar/25 | ||
![]() | ||
$${for}\:{f}\left({g}\left({x}\right)\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{50}} \:{there}\:{is}\:{no} \\ $$$${unique}\:{solution}\:{for}\:{f}\left({x}\right)\:{and}\:{f}\left({x}\right). \\ $$ | ||
Answered by SdC355 last updated on 13/Mar/25 | ||
![]() | ||
$$\: \\ $$$$\left({f}\circ\mathrm{g}\right)\left({x}\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{50}} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{renote}\:\left({f}\circ\mathrm{g}\right)\left({x}\right)\:\mathrm{as}\:{f}\left(\mathrm{g}\left({x}\right)\right) \\ $$$${f}\left(\mathrm{g}\left({x}\right)\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{50}} \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{can}'\mathrm{t}\:\mathrm{find}\:{f}\left({x}\right)\:\mathrm{and}\:\mathrm{g}\left({x}\right)..... \\ $$$$\mathrm{because}\:\mathrm{it}\:\mathrm{dosen}'\mathrm{t}\:\mathrm{matter}\:\mathrm{if} \\ $$$${f}\left({x}\right)={x}^{\mathrm{50}} \:\mathrm{and}\:\mathrm{g}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{1}\:\mathrm{and} \\ $$$${f}\left({x}\right)={x}^{\mathrm{25}} \:\mathrm{and}\:\mathrm{g}\left({x}\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{So}\:\mathrm{we}\:\mathrm{can}'\mathrm{t}\:\mathrm{Find}\:\mathrm{a}\:\mathrm{specific}\:\mathrm{function} \\ $$$${f}\:\mathrm{and}\:\mathrm{g} \\ $$ | ||
Answered by MathematicalUser2357 last updated on 13/Mar/25 | ||
![]() | ||
$${f}\left({x}\right)={x}^{\mathrm{50}} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{1} \\ $$ | ||