Question Number 216925 by Engr_Jidda last updated on 24/Feb/25 | ||
![]() | ||
Answered by mehdee7396 last updated on 24/Feb/25 | ||
![]() | ||
$${s}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{4}{u}+\mathrm{1}\right){du}+\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{4}{u}+\mathrm{1}\right){du}+...+\int_{\mathrm{0}} ^{\mathrm{10}} \left(\mathrm{4}{u}+\mathrm{1}\right){du} \\ $$$$\left.=\left.\left(\left.\mathrm{2}{u}^{\mathrm{2}} +{u}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\left(\mathrm{2}{u}^{\mathrm{2}} +{u}\right)\right]_{\mathrm{0}} ^{\mathrm{2}} +...+\left(\mathrm{2}{u}^{\mathrm{2}} +{u}\right)\right]_{\mathrm{0}} ^{\mathrm{10}} \\ $$$$=\mathrm{2}\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +...+\mathrm{10}^{\mathrm{2}} \right)+\left(\mathrm{1}+\mathrm{2}+...+\mathrm{10}\right) \\ $$$$=\mathrm{2}×\frac{\mathrm{10}×\mathrm{11}×\mathrm{21}}{\mathrm{6}}+\frac{\mathrm{10}×\mathrm{11}}{\mathrm{2}} \\ $$$$=\mathrm{770}+\mathrm{55}=\mathrm{825}\: \\ $$$$ \\ $$ | ||
Commented by Engr_Jidda last updated on 25/Feb/25 | ||
![]() | ||
$${thanks} \\ $$ | ||
Commented by Engr_Jidda last updated on 25/Feb/25 | ||
![]() | ||
$${thanks} \\ $$ | ||
Commented by MathematicalUser2357 last updated on 26/Feb/25 | ||
![]() | ||
$${thanks} \\ $$ | ||