Question Number 216827 by Tawa11 last updated on 22/Feb/25 | ||
![]() | ||
Commented by Tawa11 last updated on 22/Feb/25 | ||
![]() | ||
$$\mathrm{Reaction}\:\mathrm{of}\:\mathrm{the}\:\:\mathrm{7Kg}\:\mathrm{block}. \\ $$ | ||
Answered by mr W last updated on 22/Feb/25 | ||
![]() | ||
Commented by mr W last updated on 23/Feb/25 | ||
![]() | ||
$${g}=\mathrm{10}\:{m}/{s}^{\mathrm{2}} \\ $$$${T}_{\mathrm{1}} =\mathrm{8}×\mathrm{10}=\mathrm{80}\:{N} \\ $$$${T}_{\mathrm{2}} =\mathrm{1}.\mathrm{6}×\mathrm{10}=\mathrm{16}\:{N} \\ $$$${mg}=\mathrm{7}×\mathrm{10}=\mathrm{70}\:{N} \\ $$$$\theta=\mathrm{37}° \\ $$$$\phi=\mathrm{16}+\mathrm{37}=\mathrm{53}° \\ $$$${N}={mg}\:\mathrm{cos}\:\theta−{T}_{\mathrm{1}} \mathrm{cos}\:\phi \\ $$$$\:\:\:\:=\mathrm{70}×\mathrm{0}.\mathrm{8}−\mathrm{80}×\mathrm{0}.\mathrm{6}=\mathrm{8}\:{N} \\ $$$${f}={T}_{\mathrm{2}} +{mg}\:\mathrm{sin}\:\theta−{T}_{\mathrm{1}} \:\mathrm{sin}\:\phi \\ $$$$\:\:\:=\mathrm{16}+\mathrm{70}×\mathrm{0}.\mathrm{6}−\mathrm{80}×\mathrm{0}.\mathrm{8}=−\mathrm{6}\:{N} \\ $$$${R}=\sqrt{\mathrm{8}^{\mathrm{2}} +\left(−\mathrm{6}\right)^{\mathrm{2}} }=\mathrm{10}\:{N} \\ $$ | ||
Commented by Tawa11 last updated on 22/Feb/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$ | ||
Commented by mr W last updated on 22/Feb/25 | ||
![]() | ||
$${right}\:{or}\:{wrong}? \\ $$ | ||
Commented by Tawa11 last updated on 22/Feb/25 | ||
![]() | ||
$$\mathrm{I}\:\mathrm{will}\:\mathrm{get}\:\mathrm{back}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{for}\:\mathrm{now}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$ | ||
Commented by mr W last updated on 23/Feb/25 | ||
![]() | ||
$${basically}\:{i}\:{know}\:{that}\:{my}\:{answer}\:{is} \\ $$$${right}.\:{what}\:{i}\:{meant}\:{is}\:{what}\:{do}\:{you} \\ $$$${think}\:{if}\:{it}\:{is}\:{right},\:{in}\:{other}\:{words}\: \\ $$$${if}\:{you}\:{can}\:{follow}\:{and}\:{use}\:{it}. \\ $$ | ||
Commented by Tawa11 last updated on 23/Feb/25 | ||
![]() | ||
$$\mathrm{What}\:\mathrm{he}\:\mathrm{showed}\:\mathrm{me}\:\mathrm{is}\:\mathrm{saying}\:\mathrm{9}.\mathrm{8}\:\mathrm{sir} \\ $$ | ||
Commented by Tawa11 last updated on 23/Feb/25 | ||
![]() | ||
Commented by Tawa11 last updated on 23/Feb/25 | ||
![]() | ||
$$\mathrm{Is}\:\mathrm{this}\:\mathrm{correct}\:\mathrm{sir}? \\ $$ | ||
Commented by mr W last updated on 23/Feb/25 | ||
![]() | ||
$${i}\:{just}\:{calculated}\:{N}.\:{similarly}\:{we}\: \\ $$$${can}\:{calculate}\:{f}.\:{then}\:{we}\:{can}\: \\ $$$${calculate}\:{the}\:{resultant}\:{R}. \\ $$$${if}\:{his}\:{result}\:{is}\:{right},\:{you}\:{should}\:{be}\: \\ $$$${able}\:{to}\:{judge}\:{if}\:{you}\:{have}\:{followed}\:{my} \\ $$$${solution}. \\ $$ | ||
Commented by Tawa11 last updated on 25/Feb/25 | ||
![]() | ||
$$\mathrm{Yes}\:\mathrm{sir}. \\ $$ | ||
Commented by Tawa11 last updated on 25/Feb/25 | ||
![]() | ||
Commented by Tawa11 last updated on 25/Feb/25 | ||
![]() | ||
$$\mathrm{Sir},\:\mathrm{you}\:\mathrm{gave}\:\mathrm{this}\:\mathrm{formula}\:\mathrm{long}\:\mathrm{time}\:\mathrm{ago}. \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{trying}\:\mathrm{to}\:\mathrm{use}\:\mathrm{it}\:\mathrm{for}: \\ $$$$\:\:\:\:\mathrm{2x}^{\mathrm{3}} \:\:−\:\:\mathrm{7x}^{\mathrm{2}} \:\:−\:\:\mathrm{3x}\:\:\:+\:\:\mathrm{18}\:\:=\:\:\:\mathrm{0} \\ $$$$\mathrm{That}\:\mathrm{is},\:\:\:\:\:\:\mathrm{x}^{\mathrm{3}} \:\:−\:\:\frac{\mathrm{7}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \:\:−\:\:\frac{\mathrm{3}}{\mathrm{2}}\mathrm{x}\:\:\:+\:\:\:\mathrm{9}\:\:\:=\:\:\:\mathrm{0} \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{not}\:\mathrm{getting}:\:\:\:\:\:\mathrm{x}\:=\:\mathrm{2},\:\mathrm{x}\:=\:\mathrm{3}\:\:\mathrm{or}\:\:\mathrm{x}\:=\:−\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{Is}\:\mathrm{there}\:\mathrm{anything}\:\mathrm{missing}\:\mathrm{in}\:\mathrm{the}\:\mathrm{formular}? \\ $$ | ||
Commented by mr W last updated on 26/Feb/25 | ||
![]() | ||
$${no}! \\ $$ | ||
Commented by Tawa11 last updated on 26/Feb/25 | ||
![]() | ||
$$\mathrm{I}\:\mathrm{am}\:\mathrm{getting}\:\frac{\mathrm{5}}{\mathrm{6}}\:\mathrm{sir}?? \\ $$ | ||
Commented by Tawa11 last updated on 26/Feb/25 | ||
![]() | ||
$$\:\:\:\mathrm{x}\:\:=\:\:\mathrm{2}\sqrt{\frac{\mathrm{67}}{\mathrm{36}}}\:\mathrm{sin}\left[\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\:\mathrm{1}} \left(\frac{\frac{\mathrm{55}}{\mathrm{27}}}{\:\sqrt{\left(\frac{\mathrm{67}}{\mathrm{36}}\right)^{\mathrm{3}} }}\right)\:+\:\mathrm{0}\right]\:\:=\:\:\frac{\mathrm{5}}{\mathrm{6}} \\ $$$$\mathrm{p}\:\:=\:\:−\:\frac{\mathrm{67}}{\mathrm{36}}\:\:\:\mathrm{and}\:\:\:\mathrm{q}\:\:=\:\:\frac{\mathrm{55}}{\mathrm{27}} \\ $$ | ||
Commented by mr W last updated on 26/Feb/25 | ||
![]() | ||
$${you}\:{should}\:{know}\:{for}\:{which}\:{equation} \\ $$$${your}\:{solution}\:{is}! \\ $$$${when}\:{you}\:{found}\:{x}=\frac{\mathrm{5}}{\mathrm{6}},\:{this}\:{is}\:{the} \\ $$$${root}\:{of}\:{the}\:{transformed}\:{equation},\: \\ $$$${then}\:{the}\:{root}\:{of}\:{the}\:{original}\: \\ $$$${equation}\:{is}\: \\ $$$$\frac{\mathrm{5}}{\mathrm{6}}−\left(−\frac{\mathrm{7}}{\mathrm{3}×\mathrm{2}}\right)=\mathrm{2}. \\ $$ | ||
Commented by Tawa11 last updated on 26/Feb/25 | ||
![]() | ||
$$\mathrm{Ohh},\:\mathrm{thanks}\:\mathrm{sir}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{not}\:\mathrm{mention}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{formula}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$ | ||
Commented by Tawa11 last updated on 26/Feb/25 | ||
![]() | ||
$$\mathrm{Sorry}\:\mathrm{for}\:\mathrm{disturbing}\:\mathrm{sir}. \\ $$$$\:\:\left(\frac{−\:\mathrm{7}}{\mathrm{3}\:×\:\mathrm{2}}\right)\:\:?? \\ $$ | ||
Commented by mr W last updated on 26/Feb/25 | ||
![]() | ||
$${then}\:{you}\:{have}\:{not}\:{understood}\:{the} \\ $$$${formula}\:{or}\:{you}\:{applied}\:{the}\:{formula} \\ $$$${wrongly}.\:{show}\:{how}\:{you}\:{calculated}! \\ $$ | ||
Commented by Tawa11 last updated on 26/Feb/25 | ||
![]() | ||
$$\mathrm{Ohhh},\:\mathrm{I}\:\mathrm{understand}\:\mathrm{sir}. \\ $$$$\:\:\mathrm{x}\:\:=\:\:\mathrm{s}\:\:−\:\:\frac{\mathrm{a}}{\mathrm{3}} \\ $$ | ||
Commented by Tawa11 last updated on 26/Feb/25 | ||
![]() | ||
$$\mathrm{So},\:\mathrm{my}\:\:\frac{\mathrm{5}}{\mathrm{6}}\:\:\mathrm{is}\:\:\mathrm{s},\:\:\mathrm{to}\:\mathrm{find}\:\:\mathrm{x} \\ $$$$\:\:\mathrm{x}\:\:=\:\:\frac{\mathrm{5}}{\mathrm{6}}\:\:−\:\:\left(−\:\frac{\mathrm{7}}{\mathrm{3}\:\:×\:\:\mathrm{2}}\right) \\ $$$$\mathrm{I}\:\mathrm{understand}\:\mathrm{very}\:\mathrm{well}\:\mathrm{now}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$ | ||