Question Number 216799 by OPAVdx last updated on 20/Feb/25 | ||
![]() | ||
Commented by MathematicalUser2357 last updated on 22/Feb/25 | ||
![]() | ||
$${sen}? \\ $$ | ||
Answered by MATHEMATICSAM last updated on 22/Feb/25 | ||
![]() | ||
$$\int\:{e}^{{x}} \mathrm{sin}{x}\:{dx} \\ $$$${u}\:=\:\mathrm{sin}{x} \\ $$$$\Rightarrow\:{du}\:=\:\mathrm{cos}{x}\:{dx} \\ $$$${dv}\:=\:{e}^{{x}} \:{dx} \\ $$$$\Rightarrow\:{v}\:=\:{e}^{{x}} \\ $$$$ \\ $$$$\int{udv}\:=\:{uv}\:−\:\int{vdu} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:{e}^{{x}} \mathrm{sin}{x}\:−\:\int{e}^{{x}} \mathrm{cos}{x}\:{dx}\:....\left(\mathrm{i}\right) \\ $$$$ \\ $$$$\mathrm{Now}\:\mathrm{lets}\:\mathrm{integrate}\:\int{e}^{{x}} \mathrm{cos}{x}\:{dx} \\ $$$$\:\mathrm{Now}\:{u}\:=\:\mathrm{cos}{x} \\ $$$$\Rightarrow\:{du}\:=\:−\:\mathrm{sin}{x}\:{dx} \\ $$$${dv}\:=\:{e}^{{x}} \:{dx} \\ $$$$\Rightarrow\:{v}\:=\:{e}^{{x}} \\ $$$$\int{udv}\:=\:{uv}\:−\:\int{vdu} \\ $$$$\:\:\:\:\:\:\:\:\:=\:{e}^{{x}} \mathrm{cos}{x}\:+\:\int{e}^{{x}} \mathrm{sin}{x}\:{dx}\:...\:\left(\mathrm{ii}\right) \\ $$$$ \\ $$$$\mathrm{From}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right) \\ $$$$\int{e}^{{x}} \mathrm{sin}{x}\:{dx}\:=\:{e}^{{x}} \mathrm{sin}{x}\:−\:{e}^{{x}} \mathrm{cos}{x}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\int{e}^{{x}} \mathrm{sin}{x}\:{dx} \\ $$$$\Rightarrow\:\mathrm{2}\int{e}^{{x}} \mathrm{sin}{x}\:{dx}\:=\:{e}^{{x}} \left(\mathrm{sin}{x}\:−\:\mathrm{cos}{x}\right) \\ $$$$\Rightarrow\:\int{e}^{{x}} \mathrm{sin}{x}\:{dx}\:=\:\frac{{e}^{{x}} \left(\mathrm{sin}{x}\:−\:\mathrm{cos}{x}\right)}{\mathrm{2}}\:+\:\mathrm{C} \\ $$ | ||