Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 216670 by ahmed2025 last updated on 15/Feb/25

Answered by shunmisaki007 last updated on 15/Feb/25

∫cos^(−x) (π)dx=∫(−1)^(−x) dx     =∫(e^(πi) )^(−x) dx=∫e^(−πix) dx     =(1/(−πi))e^(−πix) +C  ∴∫cos^(−x) (π)dx=((i(−1)^(−x) )/π)+C ★

$$\int\mathrm{cos}^{−{x}} \left(\pi\right){dx}=\int\left(−\mathrm{1}\right)^{−{x}} {dx} \\ $$$$\:\:\:=\int\left({e}^{\pi{i}} \right)^{−{x}} {dx}=\int{e}^{−\pi{ix}} {dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{−\pi{i}}{e}^{−\pi{ix}} +{C} \\ $$$$\therefore\int\mathrm{cos}^{−{x}} \left(\pi\right){dx}=\frac{{i}\left(−\mathrm{1}\right)^{−{x}} }{\pi}+{C}\:\bigstar \\ $$

Answered by MrGaster last updated on 15/Feb/25

∫cos^(−x) (π)dx=((i(−1)^(−x) )/π)+C

$$\int\mathrm{cos}^{−{x}} \left(\pi\right){dx}=\frac{{i}\left(−\mathrm{1}\overset{−{x}} {\right)}}{\pi}+{C} \\ $$

Answered by Ghisom last updated on 16/Feb/25

∫(cos π)^(−x) dx=∫(−1)^(−x) dx=  =∫(cos πx −i sin πx)dx=  =(1/π)(sin πx +i cos πx) +C

$$\int\left(\mathrm{cos}\:\pi\right)^{−{x}} {dx}=\int\left(−\mathrm{1}\right)^{−{x}} {dx}= \\ $$$$=\int\left(\mathrm{cos}\:\pi{x}\:−\mathrm{i}\:\mathrm{sin}\:\pi{x}\right){dx}= \\ $$$$=\frac{\mathrm{1}}{\pi}\left(\mathrm{sin}\:\pi{x}\:+\mathrm{i}\:\mathrm{cos}\:\pi{x}\right)\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com