Question Number 216245 by Tawa11 last updated on 01/Feb/25 | ||
![]() | ||
Commented by Tawa11 last updated on 01/Feb/25 | ||
![]() | ||
$$\mathrm{I}\:\mathrm{can}\:\mathrm{use}\:\mathrm{cosine}\:\mathrm{rule}. \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{see}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is} \\ $$$$\mathrm{better}\:\mathrm{approach}. \\ $$ | ||
Commented by Tawa11 last updated on 01/Feb/25 | ||
![]() | ||
$$\mathrm{I}\:\mathrm{got}\:\:\:\mathrm{x}\:\:+\:\:\mathrm{y}\:\:=\:\:\mathrm{50}. \\ $$$$\mathrm{But}\:\mathrm{to}\:\mathrm{proceed}\:\mathrm{gives}\:\mathrm{me}\:\:\mathrm{maths}\:\mathrm{error}. \\ $$ | ||
Commented by mr W last updated on 02/Feb/25 | ||
![]() | ||
$${we}\:{can}\:{find}\:{x}=\mathrm{30}°\:{purely} \\ $$$${geometrically}\:{without}\:{using}\:{sine}\:{or}\: \\ $$$${cosine}\:{rules}. \\ $$$${show}\:{your}\:{solution}\:{using}\:{cosine}\:{rule}. \\ $$ | ||
Commented by Tawa11 last updated on 01/Feb/25 | ||
![]() | ||
Commented by Tawa11 last updated on 01/Feb/25 | ||
![]() | ||
$$\mathrm{I}\:\mathrm{represent}\:\mathrm{those}\:\mathrm{equal}\:\mathrm{length}\:\mathrm{as}\:\mathrm{1}. \\ $$$$\mathrm{I}\:\mathrm{leant}\:\mathrm{that}\:\mathrm{from}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\:\:\:\:\:\:\:\mathrm{BD}\:\:=\:\:\sqrt{\mathrm{2}\:\:−\:\:\mathrm{2cos40}} \\ $$$$\mathrm{Then},\:\mathrm{I}\:\mathrm{found}\:\mathrm{BC}. \\ $$$$\:\:\:\:\:\:\:\mathrm{BC}\:\:=\:\:\mathrm{1}^{\mathrm{2}} \:\:+\:\:\left(\sqrt{\mathrm{2}\:\:−\:\:\mathrm{2cos40}}\right)^{\mathrm{2}} \:\:−\:\:\mathrm{2}\left(\mathrm{1}\right)\left(\mathrm{2}\:\:−\:\:\mathrm{2cos40}\right)\mathrm{cos130} \\ $$$$\:\:\:\:\:\:\:\mathrm{BC}\:\:=\:\:\mathrm{3}\:\:−\:\:\mathrm{2cos40}\:\:−\:\:\mathrm{2}\left(\mathrm{2}\:\:−\:\:\mathrm{2cos40}\right)\mathrm{cos130} \\ $$$$\mathrm{So},\:\:\:\:\:\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{1}}\:\:=\:\:\frac{\mathrm{sin130}}{\mathrm{3}\:\:−\:\:\mathrm{2cos40}\:\:−\:\:\mathrm{2}\left(\mathrm{2}\:\:−\:\:\mathrm{2cos40}\right)\mathrm{cos130}} \\ $$$$\mathrm{So},\:\mathrm{I}\:\mathrm{am}\:\mathrm{getting}\:\:\:\mathrm{x}\:\:\mathrm{approximately}\:\:\:\mathrm{32}\:\:\:\mathrm{now}. \\ $$ | ||
Commented by mr W last updated on 02/Feb/25 | ||
![]() | ||
$${wrong}! \\ $$$$\:\:\:\:\:\:\:\mathrm{BC}^{\mathrm{2}} \:\:=\:\:\mathrm{1}^{\mathrm{2}} \:\:+\:\:\left(\sqrt{\mathrm{2}\:\:−\:\:\mathrm{2cos40}}\right)^{\mathrm{2}} \:\:−\:\:\mathrm{2}\left(\mathrm{1}\right)\sqrt{\mathrm{2}\:\:−\:\:\mathrm{2cos40}}\:\mathrm{cos130} \\ $$ | ||
Commented by Tawa11 last updated on 02/Feb/25 | ||
![]() | ||
$$\mathrm{Ohhh}. \\ $$$$\mathrm{How}\:\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{see}\:\mathrm{that}? \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$ | ||
Answered by mr W last updated on 01/Feb/25 | ||
![]() | ||
Commented by mr W last updated on 02/Feb/25 | ||
![]() | ||
$${blue}\:{numbers}\:{indicate}\:{the}\:{steps} \\ $$$${x}=\mathrm{70}−\mathrm{40}=\mathrm{30}° \\ $$ | ||
Commented by Tawa11 last updated on 02/Feb/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$ | ||
Commented by ArshadS last updated on 02/Feb/25 | ||
![]() | ||
$${Sir}\:{I}\:\:{coudn}'{t}\:{understand}\:{step}\:\:\mathrm{5}.\:{How}\:{is}\:{it}\:\:\mathrm{40}\:? \\ $$ | ||
Commented by mr W last updated on 02/Feb/25 | ||
![]() | ||
$$\angle{AED}=\mathrm{60}+\mathrm{40}=\mathrm{100}° \\ $$$${EA}={ED}\: \\ $$$$\Rightarrow\angle{EAD}=\angle{EDA}=\frac{\mathrm{180}−\mathrm{100}}{\mathrm{2}}=\mathrm{40}° \\ $$ | ||
Commented by ArshadS last updated on 03/Feb/25 | ||
![]() | ||
$$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\mathbb{S}\boldsymbol{\mathrm{ir}}!\:\mathrm{I}\:\mathrm{understood}\:\mathrm{now}. \\ $$ | ||