Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 216219 by mr W last updated on 30/Jan/25

Commented by mr W last updated on 31/Jan/25

a ladder with length L and mass m  is released from rest at the position  as shown. find the time the ladder  takes to fall onto the floor completely.  all surfaces are frictionless.

$${a}\:{ladder}\:{with}\:{length}\:{L}\:{and}\:{mass}\:{m} \\ $$$${is}\:{released}\:{from}\:{rest}\:{at}\:{the}\:{position} \\ $$$${as}\:{shown}.\:{find}\:{the}\:{time}\:{the}\:{ladder} \\ $$$${takes}\:{to}\:{fall}\:{onto}\:{the}\:{floor}\:{completely}. \\ $$$${all}\:{surfaces}\:{are}\:{frictionless}. \\ $$

Answered by mahdipoor last updated on 01/Feb/25

1)force diagram :  Ni^�  in  N=(0,2Lcosθ)  Mj^�  in M=(2Lsinθ,0)  −mgj^�  in (Lsinθ,Lcosθ)  2)dynamic diagram :  θ, (ccw is +)  (0,y_N ^(..) ) in N     &   (x_M ^(..) ,0) in M  3)eq :  ΣM=Iθ^(..)    (about CG)  ⇒−NLsinθ+MLcosθ=Iθ^(..)   ΣF=ma   ⇒M−mg=my^(..)   ⇒N=mx^(..)   condition :  (0,y_N ^(..) )=(x^(..) ,y^(..) )+Lθ^(.2) (sinθ,−cosθ)−Lθ^(..) (cosθ,sinθ)  (x_M ^(..) ,0)=(x^(..) ,y^(..) )+Lθ^(.2) (−sinθ,cosθ)+Lθ^(..) (cosθ,sinθ)  4)final eq:  (I/(mL^2 ))θ^(..) +θ^(.2) cos2θ+θ^(..) sin2θ=(g/L)cosθ  ⇒θ(0)=sin^(−1) (((√(L^2 −h^2 ))/L))   , θ^. (θ)=0  ⇒ans=T=θ^(−1) ((π/2))

$$\left.\mathrm{1}\right){force}\:{diagram}\:: \\ $$$${N}\hat {\mathrm{i}}\:{in}\:\:{N}=\left(\mathrm{0},\mathrm{2}{Lcos}\theta\right) \\ $$$${M}\hat {\mathrm{j}}\:{in}\:{M}=\left(\mathrm{2}{Lsin}\theta,\mathrm{0}\right) \\ $$$$−{mg}\hat {\mathrm{j}}\:{in}\:\left({Lsin}\theta,{Lcos}\theta\right) \\ $$$$\left.\mathrm{2}\right){dynamic}\:{diagram}\:: \\ $$$$\theta,\:\left({ccw}\:{is}\:+\right) \\ $$$$\left(\mathrm{0},\overset{..} {{y}}_{{N}} \right)\:{in}\:{N}\:\:\:\:\:\&\:\:\:\left(\overset{..} {{x}}_{{M}} ,\mathrm{0}\right)\:{in}\:{M} \\ $$$$\left.\mathrm{3}\right){eq}\:: \\ $$$$\Sigma{M}={I}\overset{..} {\theta}\:\:\:\left({about}\:{CG}\right) \\ $$$$\Rightarrow−{NLsin}\theta+{MLcos}\theta={I}\overset{..} {\theta} \\ $$$$\Sigma{F}={ma}\: \\ $$$$\Rightarrow{M}−{mg}={m}\overset{..} {{y}} \\ $$$$\Rightarrow{N}={m}\overset{..} {{x}} \\ $$$${condition}\:: \\ $$$$\left(\mathrm{0},\overset{..} {{y}}_{{N}} \right)=\left(\overset{..} {{x}},\overset{..} {{y}}\right)+{L}\overset{.\mathrm{2}} {\theta}\left({sin}\theta,−{cos}\theta\right)−{L}\overset{..} {\theta}\left({cos}\theta,{sin}\theta\right) \\ $$$$\left(\overset{..} {{x}}_{{M}} ,\mathrm{0}\right)=\left(\overset{..} {{x}},\overset{..} {{y}}\right)+{L}\overset{.\mathrm{2}} {\theta}\left(−{sin}\theta,{cos}\theta\right)+{L}\overset{..} {\theta}\left({cos}\theta,{sin}\theta\right) \\ $$$$\left.\mathrm{4}\right){final}\:{eq}: \\ $$$$\frac{{I}}{{mL}^{\mathrm{2}} }\overset{..} {\theta}+\overset{.\mathrm{2}} {\theta}{cos}\mathrm{2}\theta+\overset{..} {\theta}{sin}\mathrm{2}\theta=\frac{{g}}{{L}}{cos}\theta \\ $$$$\Rightarrow\theta\left(\mathrm{0}\right)={sin}^{−\mathrm{1}} \left(\frac{\sqrt{{L}^{\mathrm{2}} −{h}^{\mathrm{2}} }}{{L}}\right)\:\:\:,\:\overset{.} {\theta}\left(\theta\right)=\mathrm{0} \\ $$$$\Rightarrow{ans}={T}=\theta^{−\mathrm{1}} \left(\frac{\pi}{\mathrm{2}}\right) \\ $$

Commented by mr W last updated on 01/Feb/25

thanks!

$${thanks}! \\ $$

Answered by mr W last updated on 01/Feb/25

Commented by mr W last updated on 05/Feb/25

let (h/L)=η  ω=(dθ/dt)  y=L cos θ  at t=0:   y=h=L cos θ_0  ⇒θ_0 =cos^(−1) η  (1/2)[((mL^2 )/(12))+m((L/2))^2 ]ω^2 =((mg(h−y))/2)  ((L^2 ω^2 )/3)=g(h−L cos θ)  ω^2 =((3g)/L)(η−cos θ)  ⇒ω(dω/dθ)=((3g)/(2L)) sin θ  ⇒ω=(√(((3g)/L)(η−cos θ)))  u_x =((Lω cos θ)/2)  a_x =(L/2)(−ω^2  sin θ+cos θ ((ωdω)/dθ))      =(L/2)[−((3g)/L)(η−cos θ) sin θ+cos θ ((3g)/(2L)) sin θ]       =((3g)/4)(−2η+3 cos θ)sin θ  N=ma_x =((3mg)/4)(−2η+3 cos θ)sin θ  N=0:  ⇒−2η+3 cos θ=0  ⇒cos θ=((2η)/3) ⇒θ_1 =cos^(−1) ((2η)/3)    dt=(√(L/(3g)))(dθ/( (√(η−cos θ))))  ∫_0 ^T_1  dt=(√(L/(3g)))∫_θ_0  ^θ_1  (dθ/( (√(η−cos θ))))  ⇒T_1 =(√(L/(3g)))∫_(cos^(−1) η) ^(cos^(−1) ((2η)/3)) (dθ/( (√(η−cos θ))))  ω_1 =(√(((3g)/L)(η−cos θ_1 )))  u_1 =u_x ∣_(t=T_1 ) =((Lω_1  cos θ_1 )/2)=((cos θ_1 )/2)(√(3gL(η−cos θ_1 )))  upon t=T_1 :  u_x =u_1 =((cos θ_1 )/2)(√(3gL(η−cos θ_1 )))=(η/3)(√(ηgL))  v_y =((Lω sin θ)/2)  (1/2)×((mL^2 ω^2 )/(12))+((m(u_x ^2 +v_y ^2 ))/2)=((mg(h−y))/2)  (1/2)×((mL^2 ω^2 )/(12))+(m/2)×(((η^3 gL)/9)+((L^2 ω^2 sin^2  θ)/4))=((mg(h−L cos θ))/2)  ⇒ω=(√((12g(η−(η^3 /9)−cos θ))/(L(1+3 sin^2  θ))))  (dθ/dt)=(√((12g(η−(η^3 /9)−cos θ))/(L(1+3 sin^2  θ))))  dt=(√((L(1+3 sin^2  θ))/(12g(η−(η^3 /9)−cos θ)))) dθ  ∫_0 ^T_2  dt=(√(L/(3g)))∫_θ_1  ^(π/2) (√((1+3 sin^2  θ)/(4(η−(η^3 /9)−cos θ)))) dθ  ⇒T_2 =(√(L/(3g)))∫_(cos^(−1) ((2η)/3)) ^(π/2) (√((1+3 sin^2  θ)/(4(η−(η^3 /9)−cos θ)))) dθ  total time needed:  T=T_1 +T_2 =λ(√(L/(3g)))  with   λ=∫_(cos^(−1) η) ^(cos^(−1) ((2η)/3)) (dθ/( (√(η−cos θ))))+∫_(cos^(−1) ((2η)/3)) ^(π/2) (√((1+3 sin^2  θ)/(4(η−(η^3 /9)−cos θ)))) dθ  example: η=(h/L)=0.8  To≈1.73205081(√(L/g))

$${let}\:\frac{{h}}{{L}}=\eta \\ $$$$\omega=\frac{{d}\theta}{{dt}} \\ $$$${y}={L}\:\mathrm{cos}\:\theta \\ $$$${at}\:{t}=\mathrm{0}:\: \\ $$$${y}={h}={L}\:\mathrm{cos}\:\theta_{\mathrm{0}} \:\Rightarrow\theta_{\mathrm{0}} =\mathrm{cos}^{−\mathrm{1}} \eta \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{mL}^{\mathrm{2}} }{\mathrm{12}}+{m}\left(\frac{{L}}{\mathrm{2}}\right)^{\mathrm{2}} \right]\omega^{\mathrm{2}} =\frac{{mg}\left({h}−{y}\right)}{\mathrm{2}} \\ $$$$\frac{{L}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{3}}={g}\left({h}−{L}\:\mathrm{cos}\:\theta\right) \\ $$$$\omega^{\mathrm{2}} =\frac{\mathrm{3}{g}}{{L}}\left(\eta−\mathrm{cos}\:\theta\right) \\ $$$$\Rightarrow\omega\frac{{d}\omega}{{d}\theta}=\frac{\mathrm{3}{g}}{\mathrm{2}{L}}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\omega=\sqrt{\frac{\mathrm{3}{g}}{{L}}\left(\eta−\mathrm{cos}\:\theta\right)} \\ $$$${u}_{{x}} =\frac{{L}\omega\:\mathrm{cos}\:\theta}{\mathrm{2}} \\ $$$${a}_{{x}} =\frac{{L}}{\mathrm{2}}\left(−\omega^{\mathrm{2}} \:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\:\frac{\omega{d}\omega}{{d}\theta}\right) \\ $$$$\:\:\:\:=\frac{{L}}{\mathrm{2}}\left[−\frac{\mathrm{3}{g}}{{L}}\left(\eta−\mathrm{cos}\:\theta\right)\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\:\frac{\mathrm{3}{g}}{\mathrm{2}{L}}\:\mathrm{sin}\:\theta\right] \\ $$$$\:\:\:\:\:=\frac{\mathrm{3}{g}}{\mathrm{4}}\left(−\mathrm{2}\eta+\mathrm{3}\:\mathrm{cos}\:\theta\right)\mathrm{sin}\:\theta \\ $$$${N}={ma}_{{x}} =\frac{\mathrm{3}{mg}}{\mathrm{4}}\left(−\mathrm{2}\eta+\mathrm{3}\:\mathrm{cos}\:\theta\right)\mathrm{sin}\:\theta \\ $$$${N}=\mathrm{0}: \\ $$$$\Rightarrow−\mathrm{2}\eta+\mathrm{3}\:\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\frac{\mathrm{2}\eta}{\mathrm{3}}\:\Rightarrow\theta_{\mathrm{1}} =\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}\eta}{\mathrm{3}} \\ $$$$ \\ $$$${dt}=\sqrt{\frac{{L}}{\mathrm{3}{g}}}\frac{{d}\theta}{\:\sqrt{\eta−\mathrm{cos}\:\theta}} \\ $$$$\int_{\mathrm{0}} ^{{T}_{\mathrm{1}} } {dt}=\sqrt{\frac{{L}}{\mathrm{3}{g}}}\int_{\theta_{\mathrm{0}} } ^{\theta_{\mathrm{1}} } \frac{{d}\theta}{\:\sqrt{\eta−\mathrm{cos}\:\theta}} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\sqrt{\frac{{L}}{\mathrm{3}{g}}}\int_{\mathrm{cos}^{−\mathrm{1}} \eta} ^{\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}\eta}{\mathrm{3}}} \frac{{d}\theta}{\:\sqrt{\eta−\mathrm{cos}\:\theta}} \\ $$$$\omega_{\mathrm{1}} =\sqrt{\frac{\mathrm{3}{g}}{{L}}\left(\eta−\mathrm{cos}\:\theta_{\mathrm{1}} \right)} \\ $$$${u}_{\mathrm{1}} ={u}_{{x}} \mid_{{t}={T}_{\mathrm{1}} } =\frac{{L}\omega_{\mathrm{1}} \:\mathrm{cos}\:\theta_{\mathrm{1}} }{\mathrm{2}}=\frac{\mathrm{cos}\:\theta_{\mathrm{1}} }{\mathrm{2}}\sqrt{\mathrm{3}{gL}\left(\eta−\mathrm{cos}\:\theta_{\mathrm{1}} \right)} \\ $$$${upon}\:{t}={T}_{\mathrm{1}} : \\ $$$${u}_{{x}} ={u}_{\mathrm{1}} =\frac{\mathrm{cos}\:\theta_{\mathrm{1}} }{\mathrm{2}}\sqrt{\mathrm{3}{gL}\left(\eta−\mathrm{cos}\:\theta_{\mathrm{1}} \right)}=\frac{\eta}{\mathrm{3}}\sqrt{\eta{gL}} \\ $$$${v}_{{y}} =\frac{{L}\omega\:\mathrm{sin}\:\theta}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{{mL}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{12}}+\frac{{m}\left({u}_{{x}} ^{\mathrm{2}} +{v}_{{y}} ^{\mathrm{2}} \right)}{\mathrm{2}}=\frac{{mg}\left({h}−{y}\right)}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{{mL}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{12}}+\frac{{m}}{\mathrm{2}}×\left(\frac{\eta^{\mathrm{3}} {gL}}{\mathrm{9}}+\frac{{L}^{\mathrm{2}} \omega^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{4}}\right)=\frac{{mg}\left({h}−{L}\:\mathrm{cos}\:\theta\right)}{\mathrm{2}} \\ $$$$\Rightarrow\omega=\sqrt{\frac{\mathrm{12}{g}\left(\eta−\frac{\eta^{\mathrm{3}} }{\mathrm{9}}−\mathrm{cos}\:\theta\right)}{{L}\left(\mathrm{1}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right)}} \\ $$$$\frac{{d}\theta}{{dt}}=\sqrt{\frac{\mathrm{12}{g}\left(\eta−\frac{\eta^{\mathrm{3}} }{\mathrm{9}}−\mathrm{cos}\:\theta\right)}{{L}\left(\mathrm{1}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right)}} \\ $$$${dt}=\sqrt{\frac{{L}\left(\mathrm{1}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right)}{\mathrm{12}{g}\left(\eta−\frac{\eta^{\mathrm{3}} }{\mathrm{9}}−\mathrm{cos}\:\theta\right)}}\:{d}\theta \\ $$$$\int_{\mathrm{0}} ^{{T}_{\mathrm{2}} } {dt}=\sqrt{\frac{{L}}{\mathrm{3}{g}}}\int_{\theta_{\mathrm{1}} } ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\mathrm{1}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{4}\left(\eta−\frac{\eta^{\mathrm{3}} }{\mathrm{9}}−\mathrm{cos}\:\theta\right)}}\:{d}\theta \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\sqrt{\frac{{L}}{\mathrm{3}{g}}}\int_{\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}\eta}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\mathrm{1}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{4}\left(\eta−\frac{\eta^{\mathrm{3}} }{\mathrm{9}}−\mathrm{cos}\:\theta\right)}}\:{d}\theta \\ $$$${total}\:{time}\:{needed}: \\ $$$${T}={T}_{\mathrm{1}} +{T}_{\mathrm{2}} =\lambda\sqrt{\frac{{L}}{\mathrm{3}{g}}} \\ $$$${with}\: \\ $$$$\lambda=\int_{\mathrm{cos}^{−\mathrm{1}} \eta} ^{\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}\eta}{\mathrm{3}}} \frac{{d}\theta}{\:\sqrt{\eta−\mathrm{cos}\:\theta}}+\int_{\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}\eta}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\mathrm{1}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{4}\left(\eta−\frac{\eta^{\mathrm{3}} }{\mathrm{9}}−\mathrm{cos}\:\theta\right)}}\:{d}\theta \\ $$$${example}:\:\eta=\frac{{h}}{{L}}=\mathrm{0}.\mathrm{8} \\ $$$${To}\approx\mathrm{1}.\mathrm{73205081}\sqrt{\frac{{L}}{{g}}} \\ $$

Commented by Tawa11 last updated on 01/Feb/25

When will I know book like this.  Weldone sir

$$\mathrm{When}\:\mathrm{will}\:\mathrm{I}\:\mathrm{know}\:\mathrm{book}\:\mathrm{like}\:\mathrm{this}. \\ $$$$\mathrm{Weldone}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com