Question Number 216180 by mr W last updated on 29/Jan/25 | ||
![]() | ||
Answered by AntonCWX last updated on 29/Jan/25 | ||
![]() | ||
Commented by AntonCWX last updated on 29/Jan/25 | ||
![]() | ||
$${FG}^{\mathrm{2}} ={FC}×{FB} \\ $$$$\mathrm{6}^{\mathrm{2}} =\mathrm{4}\left({CB}+\mathrm{4}\right)\Rightarrow{CB}=\mathrm{5} \\ $$$${CE}={CB}=\mathrm{5} \\ $$$$ \\ $$$${GE}={a} \\ $$$${EH}={b} \\ $$$${ED}=\mathrm{2}{r}−{a} \\ $$$$ \\ $$$${GE}×{ED}={CE}×{EH} \\ $$$${a}\left(\mathrm{2}{r}−{a}\right)=\mathrm{5}{b} \\ $$$$\mathrm{2}{r}−{a}=\frac{\mathrm{5}{b}}{{a}} \\ $$$$\mathrm{2}{r}=\frac{\mathrm{5}{b}+{a}^{\mathrm{2}} }{{a}} \\ $$$${r}=\frac{\mathrm{5}{b}+{a}^{\mathrm{2}} }{\mathrm{2}{a}} \\ $$$$ \\ $$$${From}\:\Delta{FCE}, \\ $$$${FE}^{\mathrm{2}} ={FC}^{\mathrm{2}} +{CE}^{\mathrm{2}} \\ $$$${FE}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} \Rightarrow{FE}^{\mathrm{2}} =\mathrm{41} \\ $$$$ \\ $$$${From}\:\Delta{FGE}, \\ $$$${FE}^{\mathrm{2}} ={FG}^{\mathrm{2}} +{GE}^{\mathrm{2}} \\ $$$$\mathrm{41}=\mathrm{6}^{\mathrm{2}} +{a}^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} =\mathrm{5}\Rightarrow{a}=\sqrt{\mathrm{5}} \\ $$$$ \\ $$$${r}=\frac{\mathrm{5}{b}+\mathrm{5}}{\:\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$ \\ $$$${From}\:\Delta{CBH}, \\ $$$${BH}^{\mathrm{2}} ={BC}^{\mathrm{2}} +{CH}^{\mathrm{2}} \\ $$$$\left(\mathrm{2}{r}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} +\left(\mathrm{5}+{b}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}\left(\frac{\mathrm{5}{b}+\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} =\mathrm{25}+\mathrm{25}+\mathrm{10}{b}+{b}^{\mathrm{2}} \\ $$$$\frac{\mathrm{25}{b}^{\mathrm{2}} +\mathrm{50}{b}+\mathrm{25}}{\:\mathrm{5}}=\mathrm{50}+\mathrm{10}{b}+{b}^{\mathrm{2}} \\ $$$$\mathrm{25}{b}^{\mathrm{2}} +\mathrm{50}{b}+\mathrm{25}=\mathrm{250}+\mathrm{50}{b}+\mathrm{5}{b}^{\mathrm{2}} \\ $$$$\mathrm{20}{b}^{\mathrm{2}} =\mathrm{225}\Rightarrow{b}=\sqrt{\frac{\mathrm{45}}{\mathrm{4}}}=\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$ \\ $$$${r}=\frac{\mathrm{5}\left(\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}\right)+\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{5}}}=\frac{\mathrm{2}\sqrt{\mathrm{5}}+\mathrm{15}}{\mathrm{4}} \\ $$ | ||
Commented by mr W last updated on 29/Jan/25 | ||
Answered by A5T last updated on 29/Jan/25 | ||
![]() | ||
Commented by AntonCWX last updated on 30/Jan/25 | ||
![]() | ||
$${I}\:{think}\:{you}\:{mistakenly}\:{typed}\:{in}\:{the}\:\mathrm{1}\:{there}... \\ $$$$\frac{\mathrm{2}\sqrt{\mathrm{5}}+\mathrm{15}}{\mathrm{41}} \\ $$$${Remove}\:{the}\:\mathrm{1}\:{and}\:{its}\:{done}. \\ $$ | ||
Commented by A5T last updated on 30/Jan/25 | ||
![]() | ||
$$\mathrm{y}=\mathrm{ED}=\mathrm{EF}\:\Rightarrow\:\mathrm{6}^{\mathrm{2}} =\mathrm{4}\left(\mathrm{4}+\mathrm{y}\right)\Rightarrow\mathrm{y}=\mathrm{5} \\ $$$$\mathrm{6}^{\mathrm{2}} +\mathrm{AD}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} \Rightarrow\mathrm{AD}=\sqrt{\mathrm{5}}\Rightarrow\mathrm{CD}=\sqrt{\mathrm{41}} \\ $$$$\left(\mathrm{AD}×\mathrm{CE}\right)+\left(\mathrm{AC}×\mathrm{DE}\right)=\mathrm{CD}×\mathrm{EA}\: \\ $$$$\Rightarrow\mathrm{EA}=\frac{\mathrm{4}\sqrt{\mathrm{5}}+\mathrm{30}}{\:\sqrt{\mathrm{41}}}=\mathrm{z} \\ $$$$\mathrm{2r}\left(\sqrt{\mathrm{5}}\right)\left(\mathrm{2r}−\sqrt{\mathrm{5}}\right)+\mathrm{5}^{\mathrm{2}} \left(\mathrm{2r}\right)=\left(\mathrm{4r}^{\mathrm{2}} −\mathrm{EA}^{\mathrm{2}} \right)\sqrt{\mathrm{5}}+\mathrm{EA}^{\mathrm{2}} \left(\mathrm{2r}−\sqrt{\mathrm{5}}\right) \\ $$$$\Rightarrow\mathrm{r}\left(\mathrm{EA}^{\mathrm{2}} −\mathrm{20}\right)=\mathrm{EA}^{\mathrm{2}} \sqrt{\mathrm{5}}\Rightarrow\mathrm{r}=\frac{\mathrm{EA}^{\mathrm{2}} \sqrt{\mathrm{5}}}{\mathrm{EA}^{\mathrm{2}} −\mathrm{20}} \\ $$$$\Rightarrow\mathrm{r}=\frac{\mathrm{49}\sqrt{\mathrm{5}}+\mathrm{60}}{\mathrm{8}+\mathrm{12}\sqrt{\mathrm{5}}}=\frac{\mathrm{2}\sqrt{\mathrm{5}}+\mathrm{15}}{\mathrm{4}}\approx\mathrm{4}.\mathrm{868} \\ $$ | ||
Commented by A5T last updated on 30/Jan/25 | ||
![]() | ||
$$\mathrm{It}\:\mathrm{was}\:\mathrm{a}\:\mathrm{typo},\:\mathrm{thanks}. \\ $$ | ||
Commented by mr W last updated on 29/Jan/25 | ||
Answered by mr W last updated on 29/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 29/Jan/25 | ||
![]() | ||
$$\mathrm{4}\left(\mathrm{4}+{x}\right)=\mathrm{6}^{\mathrm{2}} \\ $$$$\Rightarrow{x}=\mathrm{5} \\ $$$$\mathrm{6}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} \\ $$$$\Rightarrow{y}=\sqrt{\mathrm{5}} \\ $$$$\left({R}−\sqrt{\mathrm{5}}\right)^{\mathrm{2}} =\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({x}−\sqrt{{R}^{\mathrm{2}} −\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$$\mathrm{10}+{R}\sqrt{\mathrm{5}}=\mathrm{5}\sqrt{{R}^{\mathrm{2}} −\mathrm{2}.\mathrm{5}^{\mathrm{2}} } \\ $$$${R}^{\mathrm{2}} −\sqrt{\mathrm{5}}{R}−\frac{\mathrm{205}}{\mathrm{16}}=\mathrm{0} \\ $$$$\Rightarrow{R}=\frac{\sqrt{\mathrm{5}}+\sqrt{\mathrm{5}+\frac{\mathrm{205}}{\mathrm{4}}}}{\mathrm{2}}=\frac{\mathrm{2}\sqrt{\mathrm{5}}+\mathrm{15}}{\mathrm{4}}\approx\mathrm{4}.\mathrm{868} \\ $$ | ||
Answered by A5T last updated on 29/Jan/25 | ||
![]() | ||
Commented by A5T last updated on 29/Jan/25 | ||
![]() | ||
$$\mathrm{4}×\left(\mathrm{4}+\mathrm{EF}\right)=\mathrm{6}^{\mathrm{2}} \Rightarrow\mathrm{EF}=\mathrm{ED}=\mathrm{5} \\ $$$$\mathrm{6}^{\mathrm{2}} +\mathrm{AD}^{\mathrm{2}} =\mathrm{CE}^{\mathrm{2}} +\mathrm{ED}^{\mathrm{2}} \Rightarrow\mathrm{AD}=\sqrt{\mathrm{5}} \\ $$$$\mathrm{AD}×\mathrm{DH}=\mathrm{ED}×\mathrm{DG}\Rightarrow\sqrt{\mathrm{5}}\left(\mathrm{2r}−\sqrt{\mathrm{5}}\right)=\mathrm{5DG}...\left(\mathrm{i}\right) \\ $$$$\mathrm{In}\:\bigtriangleup\mathrm{EFG};\:\mathrm{GF}^{\mathrm{2}} =\mathrm{EF}^{\mathrm{2}} +\mathrm{EG}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4r}^{\mathrm{2}} =\mathrm{25}+\left(\mathrm{5}+\mathrm{DG}\right)^{\mathrm{2}} \Rightarrow\mathrm{4r}^{\mathrm{2}} =\mathrm{DG}^{\mathrm{2}} +\mathrm{10DG}...\left(\mathrm{ii}\right) \\ $$$$\left(\mathrm{i}\right)\:\mathrm{in}\:\left(\mathrm{ii}\right) \\ $$$$\Rightarrow\mathrm{4r}^{\mathrm{2}} =\mathrm{25}+\left(\mathrm{5}+\frac{\mathrm{2r}−\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} \Rightarrow\mathrm{4r}^{\mathrm{2}} =\frac{\mathrm{125}+\left(\mathrm{2r}+\mathrm{4}\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\mathrm{5}} \\ $$$$\Rightarrow\mathrm{16r}^{\mathrm{2}} −\mathrm{16}\sqrt{\mathrm{5}}\mathrm{r}−\mathrm{205}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{r}=\frac{\mathrm{16}\sqrt{\mathrm{5}}\underset{−} {+}\sqrt{\mathrm{16}^{\mathrm{2}} \left(\mathrm{5}\right)−\mathrm{4}\left(\mathrm{16}\right)\left(−\mathrm{205}\right)}}{\mathrm{32}}=\frac{\mathrm{16}\sqrt{\mathrm{5}}\underset{−} {+}\mathrm{120}}{\mathrm{32}}>\mathrm{0} \\ $$$$\Rightarrow\mathrm{r}=\frac{\mathrm{2}\sqrt{\mathrm{5}}+\mathrm{15}}{\mathrm{4}} \\ $$ | ||
Commented by AntonCWX last updated on 31/Jan/25 | ||
![]() | ||
$${Same}\:{idea}\:{as}\:{mine}\:\:\underline{\underbrace{\lesseqgtr}} \\ $$ | ||