Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 216162 by Spillover last updated on 28/Jan/25

Answered by MrGaster last updated on 02/Feb/25

Let x=(π/3)−t⇒dx=−dt  ∫_0 ^(π/3) (√(sin^3 xsin((π/3)−x)))dx∫_(π/3) ^0 (√(sin^3 ((π/3)−t)sin t))(−dt)=∫_0 ^(π/3) (√(sin^3 ((π/3)−t)sin t dt))  ∫_0 ^(π/3) (√(sin^3 x sin((π/3)−x)))dx=∫_0 ^(π/3) (√(sin^3 ((π/3)−x)sin x dx))  ∫_(0 ) ^(π/3) (√(sin^3 x sin((π/3)−x)))dx=(1/2)∫_0 ^(π/2) ((√(sin^3 x sin((π/3)−x)))+(√(sin^3 ((π/3)−x)sin x)))dx  ∫_0 ^(π/3) (√(sin^3 x sin((π/3)−x)))dx=(1/2)∫_0 ^(π/3) (√(sin^3 ((π/3)/2)))dx=(π/(16))  so:  ∫_0 ^(π/3) (√(sin^3 x sin((π/3)−x)))dx=(π/(16))

$$\mathrm{Let}\:{x}=\frac{\pi}{\mathrm{3}}−{t}\Rightarrow{dx}=−{dt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{sin}^{\mathrm{3}} {x}\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}−{x}\right)}{dx}\int_{\frac{\pi}{\mathrm{3}}} ^{\mathrm{0}} \sqrt{\mathrm{sin}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{3}}−{t}\right)\mathrm{sin}\:{t}}\left(−{dt}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{sin}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{3}}−{t}\right)\mathrm{sin}\:{t}\:{dt}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{sin}^{\mathrm{3}} {x}\:\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}−{x}\right)}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{sin}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{3}}−{x}\right)\mathrm{sin}\:{x}\:{dx}} \\ $$$$\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{sin}^{\mathrm{3}} {x}\:\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}−{x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\sqrt{\mathrm{sin}^{\mathrm{3}} {x}\:\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}−{x}\right)}+\sqrt{\mathrm{sin}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{3}}−{x}\right)\mathrm{sin}\:{x}}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{sin}^{\mathrm{3}} {x}\:\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}−{x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{sin}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{3}}/\mathrm{2}\right)}{dx}=\frac{\pi}{\mathrm{16}} \\ $$$$\mathrm{so}: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{sin}^{\mathrm{3}} {x}\:\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}−{x}\right)}{dx}=\frac{\pi}{\mathrm{16}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com