Question Number 215723 by OsamaWafa last updated on 16/Jan/25 | ||
![]() | ||
Answered by som(math1967) last updated on 16/Jan/25 | ||
![]() | ||
Commented by som(math1967) last updated on 16/Jan/25 | ||
![]() | ||
$$\angle{AEC}=\mathrm{180}−\mathrm{130}=\mathrm{50}\left[{ABCE}\:{cyclic}\right] \\ $$$$\angle{CAE}=\mathrm{180}−\mathrm{110}=\mathrm{70}\left[{ACDEcyclic}\right] \\ $$$${from}\:\bigtriangleup{ACE}\: \\ $$$$\:{x}=\mathrm{180}−\mathrm{50}−\mathrm{70}=\mathrm{60} \\ $$ | ||
Answered by A5T last updated on 16/Jan/25 | ||
![]() | ||
Commented by A5T last updated on 16/Jan/25 | ||
![]() | ||
$$\angle\mathrm{CBE}=\mathrm{180}°−\mathrm{110}°=\mathrm{70}°\:\mathrm{since}\:\mathrm{BCDE}\:\mathrm{is}\:\mathrm{cyclic} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{130}°−\angle\mathrm{CBE}=\mathrm{60}° \\ $$ | ||