Question Number 215679 by BaliramKumar last updated on 14/Jan/25 | ||
![]() | ||
Answered by MATHEMATICSAM last updated on 14/Jan/25 | ||
![]() | ||
$$\mathrm{sec}^{\mathrm{2}} \theta\:=\:\frac{\mathrm{4}{xy}}{\left({x}\:+\:{y}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{cos}^{\mathrm{2}} \theta\:=\:\frac{\left({x}\:+\:{y}\right)^{\mathrm{2}} }{\mathrm{4}{xy}} \\ $$$$\left({x}\:−\:{y}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{0}\: \\ $$$$\Rightarrow\:\left({x}\:+\:{y}\right)^{\mathrm{2}} \:−\:\mathrm{4}{xy}\:\geqslant\:\mathrm{0} \\ $$$$\Rightarrow\:\left({x}\:+\:{y}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{4}{xy} \\ $$$$\Rightarrow\:\frac{\left({x}\:+\:{y}\right)^{\mathrm{2}} }{\mathrm{4}{xy}}\:\geqslant\:\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{its}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{1}\:\mathrm{when}\:{x}\:=\:{y} \\ $$$$\mathrm{We}\:\mathrm{know}\:\mathrm{cos}^{\mathrm{2}} \theta\:\leqslant\:\mathrm{1} \\ $$$$\mathrm{So}\:\mathrm{cos}^{\mathrm{2}} \theta\:\mathrm{will}\:\mathrm{be}\:\frac{\left({x}\:+\:{y}\right)^{\mathrm{2}} }{\mathrm{4}{xy}}\:\mathrm{when}\:{x}\:=\:{y}. \\ $$$$\mathrm{So}\:\mathrm{sec}^{\mathrm{2}} \theta\:=\:\frac{\mathrm{4}{xy}}{\left({x}\:+\:{y}\right)^{\mathrm{2}} }\:\mathrm{is}\:\mathrm{only}\:\mathrm{possible}\:\mathrm{when} \\ $$$${x}\:=\:{y}. \\ $$ | ||
Answered by A5T last updated on 14/Jan/25 | ||
![]() | ||
$$\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} \geqslant\mathrm{4xy}\Rightarrow\mathrm{sec}^{\mathrm{2}} \theta=\frac{\mathrm{4xy}}{\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} }\leqslant\frac{\mathrm{4xy}}{\mathrm{4xy}}=\mathrm{1} \\ $$$$\mathrm{But}\:\mathrm{sec}^{\mathrm{2}} \theta=\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \theta}\geqslant\mathrm{1}\: \\ $$$$\Rightarrow\mathrm{sec}^{\mathrm{2}} \theta\geqslant\mathrm{1}\:\mathrm{and}\:\mathrm{sec}^{\mathrm{2}} \theta\leqslant\mathrm{1}\:\mathrm{which}\:\mathrm{is}\:\mathrm{only}\:\mathrm{possible} \\ $$$$\mathrm{when}\:\mathrm{sec}\theta=\mathrm{1}\Rightarrow\mathrm{4xy}=\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} =\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} =\mathrm{0}\Rightarrow\mathrm{x}=\mathrm{y} \\ $$ | ||