Question Number 215659 by Ari last updated on 13/Jan/25 | ||
![]() | ||
Answered by Red1ight last updated on 13/Jan/25 | ||
![]() | ||
$$\mathrm{2}\left(\mathrm{100}{x}+\mathrm{10}{y}+{z}\right)=\left({x}+\mathrm{10}{y}\right)+\left({x}+\mathrm{10}{z}\right) \\ $$$$+\left({y}+\mathrm{10}{x}\right)+\left({y}+\mathrm{10}{z}\right)+\left({z}+\mathrm{10}{x}\right)+\left({z}+\mathrm{10}{y}\right) \\ $$$$\vdots \\ $$$$\mathrm{200}{x}+\mathrm{20}{y}+\mathrm{2}{z}=\mathrm{22}{x}+\mathrm{22}{y}+\mathrm{22}{z} \\ $$$$−\mathrm{178}{x}+\mathrm{2}{y}+\mathrm{20}{z}=\mathrm{0} \\ $$$${x},{y},{z}\in\mathbb{W},{x},{y},{z}<\mathrm{10} \\ $$$${Let}\:{z},{y}=\mathrm{9} \\ $$$$−\mathrm{178}{x}+\mathrm{198}=\mathrm{0} \\ $$$$\mathrm{0}<{x}<\mathrm{2} \\ $$$$\therefore\:{x}=\mathrm{1} \\ $$$${z}=\mathrm{8} \\ $$$${y}=\mathrm{9} \\ $$$$\mathrm{The}\:\mathrm{number}\:=\:\mathrm{198} \\ $$ | ||
Commented by mr W last updated on 13/Jan/25 | ||
![]() | ||
$${right}! \\ $$$${y}=\mathrm{89}{x}−\mathrm{10}{z} \\ $$$$\mathrm{0}<\mathrm{89}{x}−\mathrm{10}{z}\leqslant\mathrm{9} \\ $$$$\mathrm{10}\leqslant\mathrm{10}{z}<\mathrm{89}{x}\leqslant\mathrm{9}+\mathrm{10}{z}\leqslant\mathrm{99} \\ $$$$\Rightarrow\mathrm{1}\leqslant{x}\leqslant\mathrm{1}\:\Rightarrow{x}=\mathrm{1} \\ $$$$\mathrm{0}<\mathrm{89}−\mathrm{10}{z}\leqslant\mathrm{9} \\ $$$$\mathrm{10}{z}<\mathrm{89}\leqslant\mathrm{9}+\mathrm{10}{z} \\ $$$$\Rightarrow\mathrm{8}\leqslant{z}\leqslant\mathrm{8}\:\Rightarrow{z}=\mathrm{8} \\ $$$$\Rightarrow{y}=\mathrm{89}−\mathrm{80}=\mathrm{9} \\ $$$${the}\:{only}\:{one}\:{number}\:{is}\:\mathrm{198}. \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 14/Jan/25 | ||
![]() | ||
$$=−=−=−=−=−=−=−=−=−=−=−=−=−= \\ $$$$\mathrm{2}\left(\overline {{abc}}\right)=\overline {{ab}}+\overline {{ba}}+\overline {{bc}}+\overline {{cb}}+\overline {{ac}}+\overline {{ca}} \\ $$$$\mathrm{2}\left(\overline {{abc}}\right)=\mathrm{11}\left({a}+{b}\right)+\mathrm{11}\left({b}+{c}\right)+\mathrm{11}\left({c}+{a}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{11}×\mathrm{2}\left({a}+{b}+{c}\right) \\ $$$$\begin{array}{|c|}{\overline {{abc}}=\mathrm{11}\left({a}+{b}+{c}\right)...\mathrm{A}}\\\hline\end{array} \\ $$$$\mathrm{A}\Rightarrow\mathrm{100}{a}+\mathrm{10}{b}+{c}=\mathrm{11}{a}+\mathrm{11}{b}+\mathrm{11}{c} \\ $$$$\:\:\:\:\:\Rightarrow\mathrm{89}{a}−{b}−\mathrm{10}{c}=\mathrm{0}....\left(\mathrm{i}\right) \\ $$$${Again}, \\ $$$$\:\mathrm{A}\Rightarrow\mathrm{11}\mid\:\overline {{abc}}\Rightarrow\begin{cases}{{a}+{c}−{b}=\mathrm{0}...\left(\mathrm{ii}\right)\:}\\{\:\:\:\:\:\mathrm{or}}\\{{a}+{c}−{b}=\mathrm{11}...\left(\mathrm{iii}\right)}\end{cases} \\ $$$$\left(\mathrm{i}\right)\:\&\:\left(\mathrm{ii}\right):\begin{cases}{\mathrm{89}{a}−{b}−\mathrm{10}{c}=\mathrm{0}}\\{{a}+{c}−{b}=\mathrm{0}}\end{cases}\: \\ $$$$\Rightarrow\mathrm{88}{a}−\mathrm{11}{c}=\mathrm{0}\Rightarrow\mathrm{8}{a}={c}\Rightarrow{a}=\mathrm{1},{c}=\mathrm{8} \\ $$$${a}+{c}−{b}=\mathrm{0}\Rightarrow{b}={a}+{c}=\mathrm{1}+\mathrm{8}=\mathrm{9} \\ $$$$\overline {{abc}}=\mathrm{198}\:\checkmark \\ $$$$\:\: \\ $$$$\left(\mathrm{i}\right)\:\&\:\left(\mathrm{iii}\right):\begin{cases}{\mathrm{89}{a}−{b}−\mathrm{10}{c}=\mathrm{0}}\\{{a}+{c}−{b}=\mathrm{11}}\end{cases}\: \\ $$$$\mathrm{88}{a}−\mathrm{11}{c}=−\mathrm{11}\Rightarrow{c}=\mathrm{8}{a}+\mathrm{1}\Rightarrow{a}=\mathrm{1},{c}=\mathrm{9} \\ $$$$\Rightarrow{a}+{c}−{b}=\mathrm{11} \\ $$$$\Rightarrow{b}={a}+{c}−\mathrm{11}=\mathrm{1}+\mathrm{9}−\mathrm{11}=−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Rejected} \\ $$ | ||