Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 215650 by mr W last updated on 13/Jan/25

Commented by mr W last updated on 14/Jan/25

a rotating disc with angular velocity  𝛚 is put on an incline with rough   surface as shown.   find the maximum distance the   disc can move upwards along the   incline.  the friction coefficient is 𝛍.    (original question see youtube  channel from ajfour sir)

$${a}\:{rotating}\:{disc}\:{with}\:{angular}\:{velocity} \\ $$$$\boldsymbol{\omega}\:{is}\:{put}\:{on}\:{an}\:{incline}\:{with}\:{rough}\: \\ $$$${surface}\:{as}\:{shown}.\: \\ $$$${find}\:{the}\:{maximum}\:{distance}\:{the}\: \\ $$$${disc}\:{can}\:{move}\:{upwards}\:{along}\:{the}\: \\ $$$${incline}. \\ $$$${the}\:{friction}\:{coefficient}\:{is}\:\boldsymbol{\mu}. \\ $$$$ \\ $$$$\left({original}\:{question}\:{see}\:{youtube}\right. \\ $$$$\left.{channel}\:{from}\:{ajfour}\:{sir}\right) \\ $$

Commented by mr W last updated on 15/Jan/25

https://youtu.be/3wiUgK_riz8?si=HlRNIT6W5V9kkg1q

Answered by Wuji last updated on 13/Jan/25

E_(rot) =(1/2)Iω^2   for solid disc, the  momment of  inertia I is  I=(1/2)mr^2   gravutational potential energy  at height h  E_(grav) =mgh  Workdone aginst friction  W_f =μmgcosθS  from Energy conservation  E_(rot) =E_(grav) +W_f   (1/4)mr^2 ω^2 =mgh+μmgcosθS  S=(((1/4)mr^2 ω^2 −mgh)/(μmgcosθ))  S=((mr^2 ω^2 −4mgh)/(4μmgcosθ))  S=((m(r^2 ω^2 −4gh))/(m(4μgcosθ)))  S=((r^2 ω^2 −4gh)/(4μgcosθ))

$$\mathrm{E}_{\mathrm{rot}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{I}\omega^{\mathrm{2}} \\ $$$$\mathrm{for}\:\mathrm{solid}\:\mathrm{disc},\:\mathrm{the}\:\:\mathrm{momment}\:\mathrm{of} \\ $$$$\mathrm{inertia}\:\mathrm{I}\:\mathrm{is} \\ $$$$\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{mr}^{\mathrm{2}} \\ $$$$\mathrm{gravutational}\:\mathrm{potential}\:\mathrm{energy} \\ $$$$\mathrm{at}\:\mathrm{height}\:\mathrm{h} \\ $$$$\mathrm{E}_{\mathrm{grav}} =\mathrm{mgh} \\ $$$$\mathrm{Workdone}\:\mathrm{aginst}\:\mathrm{friction} \\ $$$$\mathrm{W}_{\mathrm{f}} =\mu\mathrm{mgcos}\theta\mathrm{S} \\ $$$$\mathrm{from}\:\mathrm{Energy}\:\mathrm{conservation} \\ $$$$\mathrm{E}_{\mathrm{rot}} =\mathrm{E}_{\mathrm{grav}} +\mathrm{W}_{\mathrm{f}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{mr}^{\mathrm{2}} \omega^{\mathrm{2}} =\mathrm{mgh}+\mu\mathrm{mgcos}\theta\mathrm{S} \\ $$$$\mathrm{S}=\frac{\frac{\mathrm{1}}{\mathrm{4}}\mathrm{mr}^{\mathrm{2}} \omega^{\mathrm{2}} −\mathrm{mgh}}{\mu\mathrm{mgcos}\theta} \\ $$$$\mathrm{S}=\frac{\mathrm{mr}^{\mathrm{2}} \omega^{\mathrm{2}} −\mathrm{4mgh}}{\mathrm{4}\mu\mathrm{mgcos}\theta} \\ $$$$\mathrm{S}=\frac{\mathrm{m}\left(\mathrm{r}^{\mathrm{2}} \omega^{\mathrm{2}} −\mathrm{4gh}\right)}{\mathrm{m}\left(\mathrm{4}\mu\mathrm{gcos}\theta\right)} \\ $$$$\mathrm{S}=\frac{\mathrm{r}^{\mathrm{2}} \omega^{\mathrm{2}} −\mathrm{4gh}}{\mathrm{4}\mu\mathrm{gcos}\theta} \\ $$

Commented by mr W last updated on 13/Jan/25

not correct! only friction by slipping  causes loss of energy. but not the  whole distance s is slipping. only  a part of it is slipping, the other  part is rolling. the rolling part  doesn′t cause energy loss.

$${not}\:{correct}!\:{only}\:{friction}\:{by}\:{slipping} \\ $$$${causes}\:{loss}\:{of}\:{energy}.\:{but}\:{not}\:{the} \\ $$$${whole}\:{distance}\:{s}\:{is}\:{slipping}.\:{only} \\ $$$${a}\:{part}\:{of}\:{it}\:{is}\:{slipping},\:{the}\:{other} \\ $$$${part}\:{is}\:{rolling}.\:{the}\:{rolling}\:{part} \\ $$$${doesn}'{t}\:{cause}\:{energy}\:{loss}. \\ $$

Answered by mr W last updated on 14/Jan/25

Commented by mr W last updated on 16/Jan/25

case 1: the friction coefficient   is large: 𝛍>tan 𝛉    in this case the rotating disc will   move upwards along the incline   after it is released.  for solid disc: I=((mr^2 )/2)  t=0 → t_1 : rolling & slipping  friction force f=μmg cos θ  (↗)  a=((μmg cos θ−mg sin θ)/m)=g(μ cos θ−sin θ)  α=((fr)/I)=((rμmg cos θ)/((mr^2 )/2))=((2μg cos θ)/r)  v_1 =ω_1 r  t_1 =(v_1 /a)=((ω−ω_1 )/α)  ((ω_1 r)/(g(μ cos θ−sin θ)))=(((ω−ω_1 )r)/(2μg cos θ))  (ω_1 /(μ−tan θ))=((ω−ω_1 )/(2μ))  ⇒ω_1 =(((μ−tan θ)ω)/(3μ−tan θ))  s_1 =(v_1 ^2 /(2a))=(((μ−tan θ)^2 ω^2 r^2 )/(2g(μcos θ−sin θ)(3μ−tan θ)^2 ))  ⇒s_1 =(((μ−tan θ)ω^2 r^2 )/(2g(3μ−tan θ)^2 cos θ))  check:  rotation of disc ϕ_1   ϕ_1 =((ω^2 −ω_1 ^2 )/(2α))=(r/(4μg cos θ))[1−(((μ−tan θ)^2 )/((3μ−tan θ)^2 ))]ω^2   ϕ_1 r=(((2μ−tan θ)ω^2 r^2 )/(g(3μ−tan θ)^2  cos θ)) > s_1   ⇒ slipping indeed!  ϕ_1 =(((2μ−tan θ)ω^2 r)/(g(3μ−tan θ)^2  cos θ))    t=t_1  → t_2 : rolling only  K.E. ⇒P.E.  (1/2)(((mr^2 )/2)+mr^2 )ω_1 ^2 =mg s_2  sin θ  s_2 =((3mr^2 )/(4mg sin θ))×(((μ−tan θ)^2 ω^2 )/((3μ−tan θ)^2 ))  ⇒s_2 =((3(μ−tan θ)^2 ω^2 r^2 )/(4g(3μ−tan θ)^2  sin θ))  ϕ_2 =(s_2 /r)=((3(μ−tan θ)^2 ω^2 r)/(4g (3μ−tan θ)^2  sin θ))  ⇒ϕ_2 =((3(μ−tan θ)^2 ω^2 r)/(4g(3μ−tan θ)^2  sin θ))    total distance s=s_1 +s_2   s=(((μ−tan θ)ω^2 r^2 )/(2g(3μ−tan θ)^2 cos θ))+((3(μ−tan θ)^2 ω^2 r^2 )/(4g (3μ−tan θ)^2  sin θ))  ⇒s=(((μ−tan θ)ω^2 r^2 )/(4g(3μ−tan θ) sin θ))  or  s sin θ=h=(((μ−tan θ)ω^2 r^2 )/(4g(3μ−tan θ)))    mgh′=(1/2)×((mω^2 r^2 )/2)  h′=((ω^2 r^2 )/(4g))  we see h=(((μ−tan θ)h′)/(3μ−tan θ))<h′    ϕ=ϕ_1 +ϕ_2 =(((2μ−tan θ)ω^2 r)/(g cos θ (3μ−tan θ)^2 ))+((3(μ−tan θ)^2 ω^2 r)/(4g(3μ−tan θ)^2  sin θ))  ⇒ϕ=(((μ+tan θ)ω^2 r)/(4g(3μ−tan θ) sin θ))

$$\boldsymbol{{case}}\:\mathrm{1}:\:\boldsymbol{{the}}\:\boldsymbol{{friction}}\:\boldsymbol{{coefficient}}\: \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{large}}:\:\boldsymbol{\mu}>\boldsymbol{\mathrm{tan}}\:\boldsymbol{\theta} \\ $$$$ \\ $$$${in}\:{this}\:{case}\:{the}\:{rotating}\:{disc}\:{will}\: \\ $$$${move}\:{upwards}\:{along}\:{the}\:{incline}\: \\ $$$${after}\:{it}\:{is}\:{released}. \\ $$$${for}\:{solid}\:{disc}:\:{I}=\frac{{mr}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\underline{{t}=\mathrm{0}\:\rightarrow\:{t}_{\mathrm{1}} :\:{rolling}\:\&\:{slipping}} \\ $$$${friction}\:{force}\:{f}=\mu{mg}\:\mathrm{cos}\:\theta\:\:\left(\nearrow\right) \\ $$$${a}=\frac{\mu{mg}\:\mathrm{cos}\:\theta−{mg}\:\mathrm{sin}\:\theta}{{m}}={g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$$\alpha=\frac{{fr}}{{I}}=\frac{{r}\mu{mg}\:\mathrm{cos}\:\theta}{\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}}=\frac{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}{{r}} \\ $$$${v}_{\mathrm{1}} =\omega_{\mathrm{1}} {r} \\ $$$${t}_{\mathrm{1}} =\frac{{v}_{\mathrm{1}} }{{a}}=\frac{\omega−\omega_{\mathrm{1}} }{\alpha} \\ $$$$\frac{\omega_{\mathrm{1}} {r}}{{g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)}=\frac{\left(\omega−\omega_{\mathrm{1}} \right){r}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta} \\ $$$$\frac{\omega_{\mathrm{1}} }{\mu−\mathrm{tan}\:\theta}=\frac{\omega−\omega_{\mathrm{1}} }{\mathrm{2}\mu} \\ $$$$\Rightarrow\omega_{\mathrm{1}} =\frac{\left(\mu−\mathrm{tan}\:\theta\right)\omega}{\mathrm{3}\mu−\mathrm{tan}\:\theta} \\ $$$${s}_{\mathrm{1}} =\frac{{v}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}{a}}=\frac{\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mu\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{s}_{\mathrm{1}} =\frac{\left(\mu−\mathrm{tan}\:\theta\right)\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \mathrm{cos}\:\theta} \\ $$$${check}: \\ $$$${rotation}\:{of}\:{disc}\:\varphi_{\mathrm{1}} \\ $$$$\varphi_{\mathrm{1}} =\frac{\omega^{\mathrm{2}} −\omega_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}\alpha}=\frac{{r}}{\mathrm{4}\mu{g}\:\mathrm{cos}\:\theta}\left[\mathrm{1}−\frac{\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} }{\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} }\right]\omega^{\mathrm{2}} \\ $$$$\varphi_{\mathrm{1}} {r}=\frac{\left(\mathrm{2}\mu−\mathrm{tan}\:\theta\right)\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{cos}\:\theta}\:>\:{s}_{\mathrm{1}} \\ $$$$\Rightarrow\:{slipping}\:{indeed}! \\ $$$$\varphi_{\mathrm{1}} =\frac{\left(\mathrm{2}\mu−\mathrm{tan}\:\theta\right)\omega^{\mathrm{2}} {r}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{cos}\:\theta} \\ $$$$ \\ $$$$\underline{{t}={t}_{\mathrm{1}} \:\rightarrow\:{t}_{\mathrm{2}} :\:{rolling}\:{only}} \\ $$$${K}.{E}.\:\Rightarrow{P}.{E}. \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}+{mr}^{\mathrm{2}} \right)\omega_{\mathrm{1}} ^{\mathrm{2}} ={mg}\:{s}_{\mathrm{2}} \:\mathrm{sin}\:\theta \\ $$$${s}_{\mathrm{2}} =\frac{\mathrm{3}{mr}^{\mathrm{2}} }{\mathrm{4}{mg}\:\mathrm{sin}\:\theta}×\frac{\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega^{\mathrm{2}} }{\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{s}_{\mathrm{2}} =\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$$\varphi_{\mathrm{2}} =\frac{{s}_{\mathrm{2}} }{{r}}=\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega^{\mathrm{2}} {r}}{\mathrm{4}{g}\:\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\varphi_{\mathrm{2}} =\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega^{\mathrm{2}} {r}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${total}\:{distance}\:{s}={s}_{\mathrm{1}} +{s}_{\mathrm{2}} \\ $$$${s}=\frac{\left(\mu−\mathrm{tan}\:\theta\right)\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \mathrm{cos}\:\theta}+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{4}{g}\:\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$$\Rightarrow{s}=\frac{\left(\mu−\mathrm{tan}\:\theta\right)\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$$${or} \\ $$$${s}\:\mathrm{sin}\:\theta={h}=\frac{\left(\mu−\mathrm{tan}\:\theta\right)\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)} \\ $$$$ \\ $$$${mgh}'=\frac{\mathrm{1}}{\mathrm{2}}×\frac{{m}\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${h}'=\frac{\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{4}{g}} \\ $$$${we}\:{see}\:{h}=\frac{\left(\mu−\mathrm{tan}\:\theta\right){h}'}{\mathrm{3}\mu−\mathrm{tan}\:\theta}<{h}' \\ $$$$ \\ $$$$\varphi=\varphi_{\mathrm{1}} +\varphi_{\mathrm{2}} =\frac{\left(\mathrm{2}\mu−\mathrm{tan}\:\theta\right)\omega^{\mathrm{2}} {r}}{{g}\:\mathrm{cos}\:\theta\:\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} }+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega^{\mathrm{2}} {r}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\varphi=\frac{\left(\mu+\mathrm{tan}\:\theta\right)\omega^{\mathrm{2}} {r}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$

Commented by mr W last updated on 14/Jan/25

Commented by mr W last updated on 14/Jan/25

case 2: the friction coefficient  is small: 𝛍<tan 𝛉  in this case the rotating can not  move upwards along the incline.  it will move downwards. after same  time the disc will be only rolling.  f=μmg cos θ  (↗)  a=((mg sin θ−μmg cos θ)/m)=g(sin θ−μ cos θ)  α=((fr)/I)=((μmgr cos θ)/((mr^2 )/2))=((2μg cos θ)/r)  v_1 =ω_1 r  t_1 =(v_1 /a)=((ω_1 +ω)/α)  ((ω_1 r)/(g(sin θ−μ cos θ)))=(((ω_1 +ω)r)/(2μg cos θ))  (ω_1 /(tan θ−μ))=((ω_1 +ω)/(2μ))  (3μ−tan θ)ω_1 =(tan θ−μ)ω  ⇒ω_1 =(((tan θ−μ)ω)/(3μ−tan θ))  ((tan θ)/3)<μ<tan θ  s=(v_1 ^2 /(2a))=(((tan θ−μ)^2 ω^2 r^2 )/(2g(sin θ−μ cos θ)(3μ−tan θ)^2 ))  ⇒s=(((tan θ−μ)ω^2 r^2 )/(2g(3μ−tan θ)^2 cos θ))    if μ≤((tan θ)/3), the disc can never roll  only on the incline, but always roll  and slip.

$$\boldsymbol{{case}}\:\mathrm{2}:\:\boldsymbol{{the}}\:\boldsymbol{{friction}}\:\boldsymbol{{coefficient}} \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{small}}:\:\boldsymbol{\mu}<\boldsymbol{\mathrm{tan}}\:\boldsymbol{\theta} \\ $$$${in}\:{this}\:{case}\:{the}\:{rotating}\:{can}\:{not} \\ $$$${move}\:{upwards}\:{along}\:{the}\:{incline}. \\ $$$${it}\:{will}\:{move}\:{downwards}.\:{after}\:{same} \\ $$$${time}\:{the}\:{disc}\:{will}\:{be}\:{only}\:{rolling}. \\ $$$${f}=\mu{mg}\:\mathrm{cos}\:\theta\:\:\left(\nearrow\right) \\ $$$${a}=\frac{{mg}\:\mathrm{sin}\:\theta−\mu{mg}\:\mathrm{cos}\:\theta}{{m}}={g}\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right) \\ $$$$\alpha=\frac{{fr}}{{I}}=\frac{\mu{mgr}\:\mathrm{cos}\:\theta}{\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}}=\frac{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}{{r}} \\ $$$${v}_{\mathrm{1}} =\omega_{\mathrm{1}} {r} \\ $$$${t}_{\mathrm{1}} =\frac{{v}_{\mathrm{1}} }{{a}}=\frac{\omega_{\mathrm{1}} +\omega}{\alpha} \\ $$$$\frac{\omega_{\mathrm{1}} {r}}{{g}\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)}=\frac{\left(\omega_{\mathrm{1}} +\omega\right){r}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta} \\ $$$$\frac{\omega_{\mathrm{1}} }{\mathrm{tan}\:\theta−\mu}=\frac{\omega_{\mathrm{1}} +\omega}{\mathrm{2}\mu} \\ $$$$\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{1}} =\left(\mathrm{tan}\:\theta−\mu\right)\omega \\ $$$$\Rightarrow\omega_{\mathrm{1}} =\frac{\left(\mathrm{tan}\:\theta−\mu\right)\omega}{\mathrm{3}\mu−\mathrm{tan}\:\theta} \\ $$$$\frac{\mathrm{tan}\:\theta}{\mathrm{3}}<\mu<\mathrm{tan}\:\theta \\ $$$${s}=\frac{{v}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}{a}}=\frac{\left(\mathrm{tan}\:\theta−\mu\right)^{\mathrm{2}} \omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{s}=\frac{\left(\mathrm{tan}\:\theta−\mu\right)\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \mathrm{cos}\:\theta} \\ $$$$ \\ $$$${if}\:\mu\leqslant\frac{\mathrm{tan}\:\theta}{\mathrm{3}},\:{the}\:{disc}\:{can}\:{never}\:{roll} \\ $$$${only}\:{on}\:{the}\:{incline},\:{but}\:{always}\:{roll} \\ $$$${and}\:{slip}. \\ $$

Commented by ajfour last updated on 15/Jan/25

https://youtu.be/-RRr7_nNNqI?si=mdeobU80KLO5c5m- A special case of a more general geometry question that mrW sir, MJS sir and myself had solved way back several yers.

Commented by mr W last updated on 15/Jan/25

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com