Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      

Question Number 215608 by ajfour last updated on 11/Jan/25

Commented by ajfour last updated on 11/Jan/25

The charged masses released as shown.  Find their speeds when they get in line.  I wonder if this gets periodic for certain  appropriate ratios!

$${The}\:{charged}\:{masses}\:{released}\:{as}\:{shown}. \\ $$$${Find}\:{their}\:{speeds}\:{when}\:{they}\:{get}\:{in}\:{line}. \\ $$$${I}\:{wonder}\:{if}\:{this}\:{gets}\:{periodic}\:{for}\:{certain} \\ $$$${appropriate}\:{ratios}! \\ $$

Commented by mahdipoor last updated on 11/Jan/25

why negative mass rising up?

$${why}\:{negative}\:{mass}\:{rising}\:{up}? \\ $$

Commented by ajfour last updated on 11/Jan/25

come?on + one pulls it upwards while  the negative pair repel..

$${come}?{on}\:+\:{one}\:{pulls}\:{it}\:{upwards}\:{while} \\ $$$${the}\:{negative}\:{pair}\:{repel}.. \\ $$

Answered by mr W last updated on 12/Jan/25

Commented by mr W last updated on 12/Jan/25

say at time t the postion of M is  (0, y_1 ) and the position of m is  (±x_2 , y_2 ).  d_1 ^2 =x_2 ^2 +(y_1 −y_2 )^2   d_2 ^2 =4x_2 ^2   F_1 =((k_e Qq)/d_1 ^2 )=((k_e Qq)/(x_2 ^2 +(y_1 −y_2 )^2 ))  F_2 =((k_e q^2 )/d_2 ^2 )=((k_e q^2 )/(4x_2 ^2 ))  V=−(dy_1 /dt)     (↓)  A=(dV/dt)=−(d^2 y_1 /dt^2 )  u=(dx_2 /dt)    (→)  v=(dy_2 /dt)    (↿)  a_x =(du/dt)=(d^2 x_2 /dt^2 )  a_y =(dv/dt)=(d^2 y_2 /dt^2 )  MA=Mg+2F_1  sin θ  ⇒(d^2 y_1 /dt^2 )=−g−((2k_e Qq(y_1 −y_2 ))/(M[x_2 ^2 +(y_1 −y_2 )^2 ]^(3/2) ))  ma_y =F_1  sin θ−mg  ⇒(d^2 y_2 /dt^2 )=((k_e Qq(y_1 −y_2 ))/(m[x_2 ^2 +(y_1 −y_2 )^2 ]^(3/2) ))−g  ma_x =F_2 −F_1  cos θ  ⇒(d^2 x_2 /dt^2 )=((k_e q^2 )/(4mx_2 ^2 ))−((k_e Qqx_2 )/(m[x_2 ^2 +(y_1 −y_2 )^2 ]^(3/2) ))  at t=0:  y_1 =b  x_2 =a, y_2 =0  V=−(dy_1 /dt)=0  u=(dx_2 /dt)=0,v= (dy_2 /dt)=0  .....  =============  i don′t think the problem is solvable.

$${say}\:{at}\:{time}\:{t}\:{the}\:{postion}\:{of}\:{M}\:{is} \\ $$$$\left(\mathrm{0},\:{y}_{\mathrm{1}} \right)\:{and}\:{the}\:{position}\:{of}\:{m}\:{is} \\ $$$$\left(\pm{x}_{\mathrm{2}} ,\:{y}_{\mathrm{2}} \right). \\ $$$${d}_{\mathrm{1}} ^{\mathrm{2}} ={x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${d}_{\mathrm{2}} ^{\mathrm{2}} =\mathrm{4}{x}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$${F}_{\mathrm{1}} =\frac{{k}_{{e}} {Qq}}{{d}_{\mathrm{1}} ^{\mathrm{2}} }=\frac{{k}_{{e}} {Qq}}{{x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${F}_{\mathrm{2}} =\frac{{k}_{{e}} {q}^{\mathrm{2}} }{{d}_{\mathrm{2}} ^{\mathrm{2}} }=\frac{{k}_{{e}} {q}^{\mathrm{2}} }{\mathrm{4}{x}_{\mathrm{2}} ^{\mathrm{2}} } \\ $$$${V}=−\frac{{dy}_{\mathrm{1}} }{{dt}}\:\:\:\:\:\left(\downarrow\right) \\ $$$${A}=\frac{{dV}}{{dt}}=−\frac{{d}^{\mathrm{2}} {y}_{\mathrm{1}} }{{dt}^{\mathrm{2}} } \\ $$$${u}=\frac{{dx}_{\mathrm{2}} }{{dt}}\:\:\:\:\left(\rightarrow\right) \\ $$$${v}=\frac{{dy}_{\mathrm{2}} }{{dt}}\:\:\:\:\left(\upharpoonleft\right) \\ $$$${a}_{{x}} =\frac{{du}}{{dt}}=\frac{{d}^{\mathrm{2}} {x}_{\mathrm{2}} }{{dt}^{\mathrm{2}} } \\ $$$${a}_{{y}} =\frac{{dv}}{{dt}}=\frac{{d}^{\mathrm{2}} {y}_{\mathrm{2}} }{{dt}^{\mathrm{2}} } \\ $$$${MA}={Mg}+\mathrm{2}{F}_{\mathrm{1}} \:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} {y}_{\mathrm{1}} }{{dt}^{\mathrm{2}} }=−{g}−\frac{\mathrm{2}{k}_{{e}} {Qq}\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)}{{M}\left[{x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} \right]^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${ma}_{{y}} ={F}_{\mathrm{1}} \:\mathrm{sin}\:\theta−{mg} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} {y}_{\mathrm{2}} }{{dt}^{\mathrm{2}} }=\frac{{k}_{{e}} {Qq}\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)}{{m}\left[{x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} \right]^{\frac{\mathrm{3}}{\mathrm{2}}} }−{g} \\ $$$${ma}_{{x}} ={F}_{\mathrm{2}} −{F}_{\mathrm{1}} \:\mathrm{cos}\:\theta \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} {x}_{\mathrm{2}} }{{dt}^{\mathrm{2}} }=\frac{{k}_{{e}} {q}^{\mathrm{2}} }{\mathrm{4}{mx}_{\mathrm{2}} ^{\mathrm{2}} }−\frac{{k}_{{e}} {Qqx}_{\mathrm{2}} }{{m}\left[{x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} \right]^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${at}\:{t}=\mathrm{0}: \\ $$$${y}_{\mathrm{1}} ={b} \\ $$$${x}_{\mathrm{2}} ={a},\:{y}_{\mathrm{2}} =\mathrm{0} \\ $$$${V}=−\frac{{dy}_{\mathrm{1}} }{{dt}}=\mathrm{0} \\ $$$${u}=\frac{{dx}_{\mathrm{2}} }{{dt}}=\mathrm{0},{v}=\:\frac{{dy}_{\mathrm{2}} }{{dt}}=\mathrm{0} \\ $$$$..... \\ $$$$============= \\ $$$${i}\:{don}'{t}\:{think}\:{the}\:{problem}\:{is}\:{solvable}. \\ $$

Commented by ajfour last updated on 12/Jan/25

Gravitation free space or on frictionless   horizontal flat plane i meant..sir.

$${Gravitation}\:{free}\:{space}\:{or}\:{on}\:{frictionless}\: \\ $$$${horizontal}\:{flat}\:{plane}\:{i}\:{meant}..{sir}. \\ $$

Commented by mr W last updated on 12/Jan/25

ok. then g=0 in the equstions.  it′s still too hard to solve, i think.

$${ok}.\:{then}\:{g}=\mathrm{0}\:{in}\:{the}\:{equstions}. \\ $$$${it}'{s}\:{still}\:{too}\:{hard}\:{to}\:{solve},\:{i}\:{think}. \\ $$

Commented by mr W last updated on 12/Jan/25

is it similar to the three−body  problem, that means there is no  general closed−form solution?

$${is}\:{it}\:{similar}\:{to}\:{the}\:{three}−{body} \\ $$$${problem},\:{that}\:{means}\:{there}\:{is}\:{no} \\ $$$${general}\:{closed}−{form}\:{solution}? \\ $$

Commented by ajfour last updated on 12/Jan/25

cant say, i have imagined and constructed all of it on my own. Think first we'll determine incline side as a function of angle theta..i have tried but could solve i ll try again.

Commented by ajfour last updated on 13/Jan/25

Say     y+z+ssin θ=b  (dz/dt)=(((2m)/M))v     (dy/dt)=v      (dx/dt)=u  ⇒  dy(1+((2m)/M))+d(ssin θ)=0  scos θ=x  m(((udu)/dx))=((kq^2 )/x^2 )−((kqQ)/s^2 )cos θ  ⇒ mu^2 =((kq^2 )/s_0 ^2 )∫((s_0 /(scos θ)))^2 {1−((Q/q))cos^3 θ}d(scos θ)  m(((vdv)/dy))=((kqQ)/s^2 )sin θ    ((M(2v)d(2v))/dz)=2(((kqQ)/s^2 ))sin θ   mv^2 =−((kq^2 )/s_0 ^2 )((M/(M+2m)))∫((Q/q))((s_0 /(ssin θ)))^2 sin^3 θd(ssin θ)  ....& even from energy conservation  U_0 =((kq^2 )/(4a^2 ))−((2kQq)/((a^2 +b^2 )))=((kq^2 )/s_0 ^2 )(((a^2 +b^2 )/4)−((2Q)/q))  U=((kq^2 )/s^2 )((1/(2cos θ)))^2 −((2kQq)/s^2 )+mu^2 +(m+2M)v^2   or differentiating this  ((kq^2 )/(4s^2 ))(2sec^2 θtan θ)(dθ/ds)−((2kq^2 )/s^3 )(((sec^2 θ)/4)−((2Q)/q))     +2mudu+2(m+2M)vdv=0  ....

$${Say}\:\:\:\:\:{y}+{z}+\boldsymbol{{s}}\mathrm{sin}\:\theta={b} \\ $$$$\frac{{dz}}{{dt}}=\left(\frac{\mathrm{2}{m}}{{M}}\right){v}\:\:\:\:\:\frac{{dy}}{{dt}}={v}\:\:\:\:\:\:\frac{{dx}}{{dt}}={u} \\ $$$$\Rightarrow\:\:{dy}\left(\mathrm{1}+\frac{\mathrm{2}{m}}{{M}}\right)+{d}\left({s}\mathrm{sin}\:\theta\right)=\mathrm{0} \\ $$$$\boldsymbol{{s}}\mathrm{cos}\:\theta={x} \\ $$$${m}\left(\frac{{udu}}{{dx}}\right)=\frac{{kq}^{\mathrm{2}} }{{x}^{\mathrm{2}} }−\frac{{kqQ}}{{s}^{\mathrm{2}} }\mathrm{cos}\:\theta \\ $$$$\Rightarrow\:{mu}^{\mathrm{2}} =\frac{{kq}^{\mathrm{2}} }{{s}_{\mathrm{0}} ^{\mathrm{2}} }\int\left(\frac{{s}_{\mathrm{0}} }{{s}\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \left\{\mathrm{1}−\left(\frac{{Q}}{{q}}\right)\mathrm{cos}\:^{\mathrm{3}} \theta\right\}{d}\left({s}\mathrm{cos}\:\theta\right) \\ $$$${m}\left(\frac{{vdv}}{{dy}}\right)=\frac{{kqQ}}{{s}^{\mathrm{2}} }\mathrm{sin}\:\theta\:\: \\ $$$$\frac{{M}\left(\mathrm{2}{v}\right){d}\left(\mathrm{2}{v}\right)}{{dz}}=\mathrm{2}\left(\frac{{kqQ}}{{s}^{\mathrm{2}} }\right)\mathrm{sin}\:\theta \\ $$$$\:{mv}^{\mathrm{2}} =−\frac{{kq}^{\mathrm{2}} }{{s}_{\mathrm{0}} ^{\mathrm{2}} }\left(\frac{{M}}{{M}+\mathrm{2}{m}}\right)\int\left(\frac{{Q}}{{q}}\right)\left(\frac{{s}_{\mathrm{0}} }{{s}\mathrm{sin}\:\theta}\right)^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{3}} \theta{d}\left({s}\mathrm{sin}\:\theta\right) \\ $$$$....\&\:{even}\:{from}\:{energy}\:{conservation} \\ $$$${U}_{\mathrm{0}} =\frac{{kq}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }−\frac{\mathrm{2}{kQq}}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}=\frac{{kq}^{\mathrm{2}} }{{s}_{\mathrm{0}} ^{\mathrm{2}} }\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{2}{Q}}{{q}}\right) \\ $$$${U}=\frac{{kq}^{\mathrm{2}} }{{s}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2cos}\:\theta}\right)^{\mathrm{2}} −\frac{\mathrm{2}{kQq}}{{s}^{\mathrm{2}} }+{mu}^{\mathrm{2}} +\left({m}+\mathrm{2}{M}\right){v}^{\mathrm{2}} \\ $$$${or}\:{differentiating}\:{this} \\ $$$$\frac{{kq}^{\mathrm{2}} }{\mathrm{4}{s}^{\mathrm{2}} }\left(\mathrm{2sec}\:^{\mathrm{2}} \theta\mathrm{tan}\:\theta\right)\frac{{d}\theta}{{ds}}−\frac{\mathrm{2}{kq}^{\mathrm{2}} }{{s}^{\mathrm{3}} }\left(\frac{\mathrm{sec}\:^{\mathrm{2}} \theta}{\mathrm{4}}−\frac{\mathrm{2}{Q}}{{q}}\right) \\ $$$$\:\:\:+\mathrm{2}{mudu}+\mathrm{2}\left({m}+\mathrm{2}{M}\right){vdv}=\mathrm{0} \\ $$$$.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com