Question Number 215608 by ajfour last updated on 11/Jan/25 | ||
![]() | ||
Commented by ajfour last updated on 11/Jan/25 | ||
![]() | ||
$${The}\:{charged}\:{masses}\:{released}\:{as}\:{shown}. \\ $$$${Find}\:{their}\:{speeds}\:{when}\:{they}\:{get}\:{in}\:{line}. \\ $$$${I}\:{wonder}\:{if}\:{this}\:{gets}\:{periodic}\:{for}\:{certain} \\ $$$${appropriate}\:{ratios}! \\ $$ | ||
Commented by mahdipoor last updated on 11/Jan/25 | ||
![]() | ||
$${why}\:{negative}\:{mass}\:{rising}\:{up}? \\ $$ | ||
Commented by ajfour last updated on 11/Jan/25 | ||
![]() | ||
$${come}?{on}\:+\:{one}\:{pulls}\:{it}\:{upwards}\:{while} \\ $$$${the}\:{negative}\:{pair}\:{repel}.. \\ $$ | ||
Answered by mr W last updated on 12/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 12/Jan/25 | ||
![]() | ||
$${say}\:{at}\:{time}\:{t}\:{the}\:{postion}\:{of}\:{M}\:{is} \\ $$$$\left(\mathrm{0},\:{y}_{\mathrm{1}} \right)\:{and}\:{the}\:{position}\:{of}\:{m}\:{is} \\ $$$$\left(\pm{x}_{\mathrm{2}} ,\:{y}_{\mathrm{2}} \right). \\ $$$${d}_{\mathrm{1}} ^{\mathrm{2}} ={x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${d}_{\mathrm{2}} ^{\mathrm{2}} =\mathrm{4}{x}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$${F}_{\mathrm{1}} =\frac{{k}_{{e}} {Qq}}{{d}_{\mathrm{1}} ^{\mathrm{2}} }=\frac{{k}_{{e}} {Qq}}{{x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${F}_{\mathrm{2}} =\frac{{k}_{{e}} {q}^{\mathrm{2}} }{{d}_{\mathrm{2}} ^{\mathrm{2}} }=\frac{{k}_{{e}} {q}^{\mathrm{2}} }{\mathrm{4}{x}_{\mathrm{2}} ^{\mathrm{2}} } \\ $$$${V}=−\frac{{dy}_{\mathrm{1}} }{{dt}}\:\:\:\:\:\left(\downarrow\right) \\ $$$${A}=\frac{{dV}}{{dt}}=−\frac{{d}^{\mathrm{2}} {y}_{\mathrm{1}} }{{dt}^{\mathrm{2}} } \\ $$$${u}=\frac{{dx}_{\mathrm{2}} }{{dt}}\:\:\:\:\left(\rightarrow\right) \\ $$$${v}=\frac{{dy}_{\mathrm{2}} }{{dt}}\:\:\:\:\left(\upharpoonleft\right) \\ $$$${a}_{{x}} =\frac{{du}}{{dt}}=\frac{{d}^{\mathrm{2}} {x}_{\mathrm{2}} }{{dt}^{\mathrm{2}} } \\ $$$${a}_{{y}} =\frac{{dv}}{{dt}}=\frac{{d}^{\mathrm{2}} {y}_{\mathrm{2}} }{{dt}^{\mathrm{2}} } \\ $$$${MA}={Mg}+\mathrm{2}{F}_{\mathrm{1}} \:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} {y}_{\mathrm{1}} }{{dt}^{\mathrm{2}} }=−{g}−\frac{\mathrm{2}{k}_{{e}} {Qq}\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)}{{M}\left[{x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} \right]^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${ma}_{{y}} ={F}_{\mathrm{1}} \:\mathrm{sin}\:\theta−{mg} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} {y}_{\mathrm{2}} }{{dt}^{\mathrm{2}} }=\frac{{k}_{{e}} {Qq}\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)}{{m}\left[{x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} \right]^{\frac{\mathrm{3}}{\mathrm{2}}} }−{g} \\ $$$${ma}_{{x}} ={F}_{\mathrm{2}} −{F}_{\mathrm{1}} \:\mathrm{cos}\:\theta \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} {x}_{\mathrm{2}} }{{dt}^{\mathrm{2}} }=\frac{{k}_{{e}} {q}^{\mathrm{2}} }{\mathrm{4}{mx}_{\mathrm{2}} ^{\mathrm{2}} }−\frac{{k}_{{e}} {Qqx}_{\mathrm{2}} }{{m}\left[{x}_{\mathrm{2}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} \right]^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${at}\:{t}=\mathrm{0}: \\ $$$${y}_{\mathrm{1}} ={b} \\ $$$${x}_{\mathrm{2}} ={a},\:{y}_{\mathrm{2}} =\mathrm{0} \\ $$$${V}=−\frac{{dy}_{\mathrm{1}} }{{dt}}=\mathrm{0} \\ $$$${u}=\frac{{dx}_{\mathrm{2}} }{{dt}}=\mathrm{0},{v}=\:\frac{{dy}_{\mathrm{2}} }{{dt}}=\mathrm{0} \\ $$$$..... \\ $$$$============= \\ $$$${i}\:{don}'{t}\:{think}\:{the}\:{problem}\:{is}\:{solvable}. \\ $$ | ||
Commented by ajfour last updated on 12/Jan/25 | ||
![]() | ||
$${Gravitation}\:{free}\:{space}\:{or}\:{on}\:{frictionless}\: \\ $$$${horizontal}\:{flat}\:{plane}\:{i}\:{meant}..{sir}. \\ $$ | ||
Commented by mr W last updated on 12/Jan/25 | ||
![]() | ||
$${ok}.\:{then}\:{g}=\mathrm{0}\:{in}\:{the}\:{equstions}. \\ $$$${it}'{s}\:{still}\:{too}\:{hard}\:{to}\:{solve},\:{i}\:{think}. \\ $$ | ||
Commented by mr W last updated on 12/Jan/25 | ||
![]() | ||
$${is}\:{it}\:{similar}\:{to}\:{the}\:{three}−{body} \\ $$$${problem},\:{that}\:{means}\:{there}\:{is}\:{no} \\ $$$${general}\:{closed}−{form}\:{solution}? \\ $$ | ||
Commented by ajfour last updated on 12/Jan/25 | ||
cant say, i have imagined and constructed all of it on my own. Think first we'll determine incline side as a function of angle theta..i have tried but could solve i ll try again. | ||
Commented by ajfour last updated on 13/Jan/25 | ||
![]() | ||
$${Say}\:\:\:\:\:{y}+{z}+\boldsymbol{{s}}\mathrm{sin}\:\theta={b} \\ $$$$\frac{{dz}}{{dt}}=\left(\frac{\mathrm{2}{m}}{{M}}\right){v}\:\:\:\:\:\frac{{dy}}{{dt}}={v}\:\:\:\:\:\:\frac{{dx}}{{dt}}={u} \\ $$$$\Rightarrow\:\:{dy}\left(\mathrm{1}+\frac{\mathrm{2}{m}}{{M}}\right)+{d}\left({s}\mathrm{sin}\:\theta\right)=\mathrm{0} \\ $$$$\boldsymbol{{s}}\mathrm{cos}\:\theta={x} \\ $$$${m}\left(\frac{{udu}}{{dx}}\right)=\frac{{kq}^{\mathrm{2}} }{{x}^{\mathrm{2}} }−\frac{{kqQ}}{{s}^{\mathrm{2}} }\mathrm{cos}\:\theta \\ $$$$\Rightarrow\:{mu}^{\mathrm{2}} =\frac{{kq}^{\mathrm{2}} }{{s}_{\mathrm{0}} ^{\mathrm{2}} }\int\left(\frac{{s}_{\mathrm{0}} }{{s}\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \left\{\mathrm{1}−\left(\frac{{Q}}{{q}}\right)\mathrm{cos}\:^{\mathrm{3}} \theta\right\}{d}\left({s}\mathrm{cos}\:\theta\right) \\ $$$${m}\left(\frac{{vdv}}{{dy}}\right)=\frac{{kqQ}}{{s}^{\mathrm{2}} }\mathrm{sin}\:\theta\:\: \\ $$$$\frac{{M}\left(\mathrm{2}{v}\right){d}\left(\mathrm{2}{v}\right)}{{dz}}=\mathrm{2}\left(\frac{{kqQ}}{{s}^{\mathrm{2}} }\right)\mathrm{sin}\:\theta \\ $$$$\:{mv}^{\mathrm{2}} =−\frac{{kq}^{\mathrm{2}} }{{s}_{\mathrm{0}} ^{\mathrm{2}} }\left(\frac{{M}}{{M}+\mathrm{2}{m}}\right)\int\left(\frac{{Q}}{{q}}\right)\left(\frac{{s}_{\mathrm{0}} }{{s}\mathrm{sin}\:\theta}\right)^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{3}} \theta{d}\left({s}\mathrm{sin}\:\theta\right) \\ $$$$....\&\:{even}\:{from}\:{energy}\:{conservation} \\ $$$${U}_{\mathrm{0}} =\frac{{kq}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }−\frac{\mathrm{2}{kQq}}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}=\frac{{kq}^{\mathrm{2}} }{{s}_{\mathrm{0}} ^{\mathrm{2}} }\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{2}{Q}}{{q}}\right) \\ $$$${U}=\frac{{kq}^{\mathrm{2}} }{{s}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2cos}\:\theta}\right)^{\mathrm{2}} −\frac{\mathrm{2}{kQq}}{{s}^{\mathrm{2}} }+{mu}^{\mathrm{2}} +\left({m}+\mathrm{2}{M}\right){v}^{\mathrm{2}} \\ $$$${or}\:{differentiating}\:{this} \\ $$$$\frac{{kq}^{\mathrm{2}} }{\mathrm{4}{s}^{\mathrm{2}} }\left(\mathrm{2sec}\:^{\mathrm{2}} \theta\mathrm{tan}\:\theta\right)\frac{{d}\theta}{{ds}}−\frac{\mathrm{2}{kq}^{\mathrm{2}} }{{s}^{\mathrm{3}} }\left(\frac{\mathrm{sec}\:^{\mathrm{2}} \theta}{\mathrm{4}}−\frac{\mathrm{2}{Q}}{{q}}\right) \\ $$$$\:\:\:+\mathrm{2}{mudu}+\mathrm{2}\left({m}+\mathrm{2}{M}\right){vdv}=\mathrm{0} \\ $$$$.... \\ $$ | ||