Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 215312 by ajfour last updated on 02/Jan/25

Commented by mr W last updated on 06/Jan/25

please try Q215395

$${please}\:{try}\:{Q}\mathrm{215395} \\ $$

Answered by mr W last updated on 03/Jan/25

Commented by mr W last updated on 03/Jan/25

I=((ML^2 )/(12))  b(tan θ+tan φ)=((3L)/2)  ⇒tan φ=((3L)/(2b))−tan θ  mu sin θ=mU sin φ  ⇒U=((u sin θ)/(sin φ))  mu cos θ−J=mU cos φ  ⇒J=mu(cos θ−((sin θ)/(tan φ)))  MV=J  ⇒V=((mu)/(M(cos θ−((sin θ)/(tan φ)))))  ((ML^2 ω)/(12))=J((L/2)−b tan θ)  ⇒ω=((12mu((1/2)−((b tan θ)/L)))/(ML(cos θ−((sin θ)/(tan φ)))))  ((mU^2 )/2)+((MV^2 )/2)+(1/2)×((ML^2 ω^2 )/(12))=((mu^2 )/2)  ((sin^2  θ)/(sin^2  φ))+(m/(M(cos θ−((sin θ)/(tan φ)))^2 ))+((12m((1/2)−((b tan θ)/L))^2 )/(M(cos θ−((sin θ)/(tan φ)))^2 ))=1  ((μ[1+12((1/2)−((b tan θ)/L))^2 ])/((cos θ−((sin θ)/(tan φ)))^2 ))=1−((sin^2  θ)/(sin^2  φ))  with μ=(m/M), ξ=(b/L)  ⇒((μ[1+12((1/2)−ξ tan θ)^2 ](1+tan^2  θ)^2 )/((1−((tan θ)/(tan φ)))^2 ))+(((tan θ)/(tan φ)))^2 =1  with tan φ=(3/(2ξ))−tan θ  ==================  θ_1 =ωt=((12μ((1/2)−ξ tan θ)ut)/(L(cos θ−((sin θ)/(tan φ)))))  x_1 =(L/2)  y_1 =b+Vt=ξL+((μut)/(cos θ−((sin θ)/(tan φ))))  x_2 =b tan θ+Ut sin φ=ξL tan θ+ut sin θ  y_2 =b−Ut cos φ=ξL−((ut sin θ)/(tan φ))

$${I}=\frac{{ML}^{\mathrm{2}} }{\mathrm{12}} \\ $$$${b}\left(\mathrm{tan}\:\theta+\mathrm{tan}\:\phi\right)=\frac{\mathrm{3}{L}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{tan}\:\phi=\frac{\mathrm{3}{L}}{\mathrm{2}{b}}−\mathrm{tan}\:\theta \\ $$$${mu}\:\mathrm{sin}\:\theta={mU}\:\mathrm{sin}\:\phi \\ $$$$\Rightarrow{U}=\frac{{u}\:\mathrm{sin}\:\theta}{\mathrm{sin}\:\phi} \\ $$$${mu}\:\mathrm{cos}\:\theta−{J}={mU}\:\mathrm{cos}\:\phi \\ $$$$\Rightarrow{J}={mu}\left(\mathrm{cos}\:\theta−\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi}\right) \\ $$$${MV}={J} \\ $$$$\Rightarrow{V}=\frac{{mu}}{{M}\left(\mathrm{cos}\:\theta−\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi}\right)} \\ $$$$\frac{{ML}^{\mathrm{2}} \omega}{\mathrm{12}}={J}\left(\frac{{L}}{\mathrm{2}}−{b}\:\mathrm{tan}\:\theta\right) \\ $$$$\Rightarrow\omega=\frac{\mathrm{12}{mu}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{{b}\:\mathrm{tan}\:\theta}{{L}}\right)}{{ML}\left(\mathrm{cos}\:\theta−\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi}\right)} \\ $$$$\frac{{mU}^{\mathrm{2}} }{\mathrm{2}}+\frac{{MV}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}×\frac{{ML}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{12}}=\frac{{mu}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{sin}^{\mathrm{2}} \:\phi}+\frac{{m}}{{M}\left(\mathrm{cos}\:\theta−\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi}\right)^{\mathrm{2}} }+\frac{\mathrm{12}{m}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{{b}\:\mathrm{tan}\:\theta}{{L}}\right)^{\mathrm{2}} }{{M}\left(\mathrm{cos}\:\theta−\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mu\left[\mathrm{1}+\mathrm{12}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{{b}\:\mathrm{tan}\:\theta}{{L}}\right)^{\mathrm{2}} \right]}{\left(\mathrm{cos}\:\theta−\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi}\right)^{\mathrm{2}} }=\mathrm{1}−\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{sin}^{\mathrm{2}} \:\phi} \\ $$$${with}\:\mu=\frac{{m}}{{M}},\:\xi=\frac{{b}}{{L}} \\ $$$$\Rightarrow\frac{\mu\left[\mathrm{1}+\mathrm{12}\left(\frac{\mathrm{1}}{\mathrm{2}}−\xi\:\mathrm{tan}\:\theta\right)^{\mathrm{2}} \right]\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} }{\left(\mathrm{1}−\frac{\mathrm{tan}\:\theta}{\mathrm{tan}\:\phi}\right)^{\mathrm{2}} }+\left(\frac{\mathrm{tan}\:\theta}{\mathrm{tan}\:\phi}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${with}\:\mathrm{tan}\:\phi=\frac{\mathrm{3}}{\mathrm{2}\xi}−\mathrm{tan}\:\theta \\ $$$$================== \\ $$$$\theta_{\mathrm{1}} =\omega{t}=\frac{\mathrm{12}\mu\left(\frac{\mathrm{1}}{\mathrm{2}}−\xi\:\mathrm{tan}\:\theta\right){ut}}{{L}\left(\mathrm{cos}\:\theta−\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi}\right)} \\ $$$${x}_{\mathrm{1}} =\frac{{L}}{\mathrm{2}} \\ $$$${y}_{\mathrm{1}} ={b}+{Vt}=\xi{L}+\frac{\mu{ut}}{\mathrm{cos}\:\theta−\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi}} \\ $$$${x}_{\mathrm{2}} ={b}\:\mathrm{tan}\:\theta+{Ut}\:\mathrm{sin}\:\phi=\xi{L}\:\mathrm{tan}\:\theta+{ut}\:\mathrm{sin}\:\theta \\ $$$${y}_{\mathrm{2}} ={b}−{Ut}\:\mathrm{cos}\:\phi=\xi{L}−\frac{{ut}\:\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi} \\ $$

Commented by mr W last updated on 03/Jan/25

Commented by mr W last updated on 03/Jan/25

Commented by mr W last updated on 03/Jan/25

Commented by mr W last updated on 03/Jan/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com