Question Number 215256 by ajfour last updated on 01/Jan/25 | ||
![]() | ||
Commented by ajfour last updated on 01/Jan/25 | ||
![]() | ||
$${After}\:{this}\:{elastic}\:{collision}\:{on}\:{a}\:{flat} \\ $$$${frictionless}\:{surface}\:{Find}\:{after}\:{what} \\ $$$${time}\:{at}\:{what}\:{y}\:{coordinate}\:{does}\:{point} \\ $$$${A}\:{cross}\:{the}\:{y}-{axis}. \\ $$ | ||
Commented by ajfour last updated on 02/Jan/25 | ||
https://youtu.be/roXqnV-fZ7k?si=JafblceCGUAmx3u- My video lecture discussing a problem of finding spring extension when to each end of it is attached a positive charge q. | ||
Answered by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
$${I}_{\mathrm{1}} ={I}_{\mathrm{2}} =\frac{{mL}^{\mathrm{2}} }{\mathrm{12}} \\ $$$${mv}_{\mathrm{1}} ={J} \\ $$$${I}_{\mathrm{1}} \omega_{\mathrm{1}} =\frac{{JL}}{\mathrm{4}} \\ $$$$\Rightarrow\omega_{\mathrm{1}} =\frac{\mathrm{3}{v}_{\mathrm{1}} }{{L}} \\ $$$${mu}_{\mathrm{2}} ={mu}\:\mathrm{cos}\:\mathrm{30}° \\ $$$$\Rightarrow{u}_{\mathrm{2}} =\frac{\sqrt{\mathrm{3}}{u}}{\mathrm{2}} \\ $$$${mv}_{\mathrm{2}} ={mu}\:\mathrm{sin}\:\mathrm{30}°−{J} \\ $$$$\Rightarrow{v}_{\mathrm{2}} =\frac{{u}}{\mathrm{2}}−{v}_{\mathrm{1}} \\ $$$${I}_{\mathrm{2}} \omega_{\mathrm{2}} =−{J}×\frac{{L}\:\mathrm{cos}\:\mathrm{30}°}{\mathrm{2}} \\ $$$$\Rightarrow\omega_{\mathrm{2}} =−\frac{\mathrm{3}\sqrt{\mathrm{3}}{v}_{\mathrm{1}} }{{L}} \\ $$$$\frac{{m}}{\mathrm{2}}\left({v}_{\mathrm{1}} ^{\mathrm{2}} +{u}_{\mathrm{2}} ^{\mathrm{2}} +{v}_{\mathrm{2}} ^{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{2}}×\frac{{mL}^{\mathrm{2}} }{\mathrm{12}}\left(\omega_{\mathrm{1}} ^{\mathrm{2}} +\omega_{\mathrm{2}} ^{\mathrm{2}} \right)=\frac{{mu}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${v}_{\mathrm{1}} ^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}{u}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{u}}{\mathrm{2}}−{v}_{\mathrm{1}} \right)^{\mathrm{2}} +\frac{{L}^{\mathrm{2}} }{\mathrm{12}}\left[\left(\frac{\mathrm{3}{v}_{\mathrm{1}} }{{L}}\right)^{\mathrm{2}} +\left(−\frac{\mathrm{3}\sqrt{\mathrm{3}}{v}_{\mathrm{1}} }{{L}}\right)^{\mathrm{2}} \right]={u}^{\mathrm{2}} \\ $$$$\mathrm{5}{v}_{\mathrm{1}} ^{\mathrm{2}} −{uv}_{\mathrm{1}} =\mathrm{0} \\ $$$$\Rightarrow{v}_{\mathrm{1}} =\frac{{u}}{\mathrm{5}} \\ $$$$\Rightarrow\omega_{\mathrm{1}} =\frac{\mathrm{3}{u}}{\mathrm{5}{L}} \\ $$$${at}\:{time}\:{t}\:{point}\:{A}\:{crosses}\:{the}\:{y}−{axis}: \\ $$$${x}_{{A}} =\frac{{L}}{\mathrm{2}}\mathrm{cos}\:\left(\omega_{\mathrm{1}} {t}\right)=\mathrm{0} \\ $$$$\Rightarrow\omega_{\mathrm{1}} {t}=\frac{\mathrm{3}{ut}}{\mathrm{5}{L}}=\frac{\pi}{\mathrm{2}}\: \\ $$$$\Rightarrow{t}=\frac{\mathrm{5}\pi{L}}{\mathrm{6}{u}}\:\checkmark \\ $$$${y}_{{A}} ={v}_{\mathrm{1}} {t}+\frac{{L}}{\mathrm{2}}\:\mathrm{sin}\:\left(\omega_{\mathrm{1}} {t}\right)=\frac{{L}\omega_{\mathrm{1}} {t}}{\mathrm{3}}+\frac{{L}}{\mathrm{2}}\:\mathrm{sin}\:\left(\omega_{\mathrm{1}} {t}\right) \\ $$$$\:\:\:\:\:=\frac{{L}}{\mathrm{2}}\left(\frac{\pi}{\mathrm{3}}+\mathrm{1}\right)\:>{L} \\ $$$$================== \\ $$$$\theta_{\mathrm{1}} =\omega_{\mathrm{1}} {t}=\frac{\mathrm{3}{ut}}{\mathrm{5}{L}} \\ $$$${x}_{\mathrm{1}} =\mathrm{0} \\ $$$${y}_{\mathrm{1}} ={v}_{\mathrm{1}} {t}=\frac{{ut}}{\mathrm{5}} \\ $$$${x}_{{A}} ={x}_{\mathrm{1}} +\frac{{L}\:\mathrm{cos}\:\theta_{\mathrm{1}} }{\mathrm{2}}=\frac{{L}\:\mathrm{cos}\:\left(\frac{\mathrm{3}{ut}}{\mathrm{5}{L}}\right)}{\mathrm{2}} \\ $$$${y}_{{A}} ={y}_{\mathrm{1}} +\frac{{L}\:\mathrm{sin}\:\theta_{\mathrm{1}} }{\mathrm{2}}=\frac{{ut}}{\mathrm{5}}+\frac{{L}\:\mathrm{sin}\:\left(\frac{\mathrm{3}{ut}}{\mathrm{5}{L}}\right)}{\mathrm{2}} \\ $$$$\theta_{\mathrm{2}} =\frac{\pi}{\mathrm{6}}+\omega_{\mathrm{2}} {t}=\frac{\pi}{\mathrm{6}}−\frac{\mathrm{3}\sqrt{\mathrm{3}}{ut}}{\mathrm{5}{L}} \\ $$$${x}_{\mathrm{2}} =\frac{{L}}{\mathrm{4}}−\frac{\sqrt{\mathrm{3}}{L}}{\mathrm{4}}+{u}_{\mathrm{2}} {t}=\frac{\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){L}}{\mathrm{4}}+\frac{\sqrt{\mathrm{3}}{ut}}{\mathrm{2}} \\ $$$${y}_{\mathrm{2}} =−\frac{{L}}{\mathrm{4}}+{v}_{\mathrm{2}} {t}=−\frac{{L}}{\mathrm{4}}+\frac{\mathrm{3}{ut}}{\mathrm{10}} \\ $$$${x}_{{D}} ={x}_{\mathrm{2}} +\frac{{L}\:\mathrm{cos}\:\theta_{\mathrm{2}} }{\mathrm{2}}=\frac{\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){L}}{\mathrm{4}}+\frac{\sqrt{\mathrm{3}}{ut}}{\mathrm{2}}+\frac{{L}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{6}}−\frac{\mathrm{3}\sqrt{\mathrm{3}}{ut}}{\mathrm{5}{L}}\right)}{\mathrm{2}} \\ $$$${y}_{{D}} ={y}_{\mathrm{2}} +\frac{{L}\:\mathrm{sin}\:\theta_{\mathrm{2}} }{\mathrm{2}}=−\frac{{L}}{\mathrm{4}}+\frac{\mathrm{3}{ut}}{\mathrm{10}}+\frac{{L}\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{6}}−\frac{\mathrm{3}\sqrt{\mathrm{3}}{ut}}{\mathrm{5}{L}}\right)}{\mathrm{2}} \\ $$$$================== \\ $$$${following}\:{pictures}\:{are}\:{showing}\:{the} \\ $$$${movement}\:{of}\:{the}\:{rods}\:{after}\:{the} \\ $$$${collision}\:{as}\:{well}\:{as}\:{the}\:{locus}\:{of}\:{the} \\ $$$${points}\:{A}\:{and}\:{D}. \\ $$ | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by ajfour last updated on 02/Jan/25 | ||
![]() | ||
$${beautiful}\:{omg}!\:{how}\:{you}\:{generate}\:{this}. \\ $$ | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
$${i}\:{just}\:{have}\:{used}\:{the}\:{app}\:{Grapher} \\ $$$${like}\:{following}. \\ $$$$\left({with}\:{m}={ut}\:{in}\:{the}\:{equations}\right) \\ $$ | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
Commented by mr W last updated on 02/Jan/25 | ||
![]() | ||
$${we}\:{can}\:{even}\:{generate}\:{an}\:{animation}. \\ $$$${but}\:{since}\:{this}\:{app}\:{doesn}'{t}\:{support}\: \\ $$$${animated}\:{gif}\:{images},\:{so}\:{i}\:{just}\:{took} \\ $$$${some}\:{screenshots}\:{for}\:{different} \\ $$$${values}\:{of}\:{m}. \\ $$ | ||
Commented by MathematicalUser2357 last updated on 17/Feb/25 | ||
![]() | ||
$${So}\:{I}\:{have}\:{a}\:{Grapher}\:{Free}: \\ $$ | ||