Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 215193 by MATHEMATICSAM last updated on 31/Dec/24

Commented by MATHEMATICSAM last updated on 31/Dec/24

If the area of the smaller circle is a sq unit  and the area of the larger circle is A sq unit  find (a/A) .

$$\mathrm{If}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{circle}\:\mathrm{is}\:{a}\:\mathrm{sq}\:\mathrm{unit} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{larger}\:\mathrm{circle}\:\mathrm{is}\:{A}\:\mathrm{sq}\:\mathrm{unit} \\ $$$$\mathrm{find}\:\frac{{a}}{{A}}\:. \\ $$

Answered by som(math1967) last updated on 31/Dec/24

let side of square=x   ∴ a=((πx^2 )/4)   A=π(((x(√2))/2))^2 =((πx^2 )/2)      (a/A)=((πx^2 )/4)×(2/(πx^2 ))=(1/2)

$${let}\:{side}\:{of}\:{square}={x} \\ $$$$\:\therefore\:{a}=\frac{\pi{x}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:{A}=\pi\left(\frac{{x}\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\pi{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\:\frac{{a}}{{A}}=\frac{\pi{x}^{\mathrm{2}} }{\mathrm{4}}×\frac{\mathrm{2}}{\pi{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Answered by mr W last updated on 02/Jan/25

it′s clear (r/R)=(1/( (√2))), therefore   (a/A)=((r/R))^2 =(1/2)

$${it}'{s}\:{clear}\:\frac{{r}}{{R}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\:{therefore}\: \\ $$$$\frac{{a}}{{A}}=\left(\frac{{r}}{{R}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com