Question Number 214815 by mr W last updated on 20/Dec/24 | ||
![]() | ||
Commented by mr W last updated on 20/Dec/24 | ||
![]() | ||
$${a}\:{solid}\:{ball}\:{with}\:{mass}\:\boldsymbol{{m}}\:{and}\:{radius}\:\boldsymbol{{r}} \\ $$$${is}\:{released}\:{from}\:{the}\:{top}\:{of}\:{a} \\ $$$${quarter}−{cylindrical}\:{wedge}\:{with} \\ $$$${mass}\:\boldsymbol{{M}}\:{and}\:{radius}\:\boldsymbol{{R}}\:{as}\:{shown}. \\ $$$${there}\:{is}\:{enough}\:{friction}\:{between} \\ $$$${ball}\:{and}\:{wedge},\:{but}\:{there}\:{is}\:{no} \\ $$$${friction}\:{between}\:{wedge}\:{and}\:{ground}. \\ $$$${find}\:{the}\:{final}\:{speed}\:{of}\:{the}\:{wedge}. \\ $$ | ||
Answered by aleks041103 last updated on 21/Dec/24 | ||
![]() | ||
Commented by aleks041103 last updated on 21/Dec/24 | ||
![]() | ||
Commented by mr W last updated on 21/Dec/24 | ||
![]() | ||
$${thanks}\:{sir}!\: \\ $$$${but}\:{i}\:{got}\:{a}\:{cubic}\:{final}\:{equation}\:{for} \\ $$$$\mathrm{cos}\:\theta. \\ $$$${example}:\:\frac{{M}}{{m}}=\mathrm{2}\: \\ $$$$\Rightarrow\mathrm{cos}\:\theta\approx\mathrm{0}.\mathrm{449192}\:\Rightarrow\theta\approx\mathrm{63}.\mathrm{308}° \\ $$ | ||
Answered by mr W last updated on 21/Dec/24 | ||
![]() | ||
Commented by mr W last updated on 21/Dec/24 | ||
![]() | ||
$${center}\:{of}\:{quarter}\:{circle}\:\left({X},\:\mathrm{0}\right) \\ $$$${center}\:{of}\:{ball}\:\left({x},\:{y}\right) \\ $$$${let}\:{k}=\frac{{M}}{{m}}+\mathrm{1} \\ $$$${x}={X}+\left({R}+{r}\right)\mathrm{sin}\:\theta \\ $$$${y}=\left({R}+{r}\right)\mathrm{cos}\:\theta \\ $$$${rotation}\:{of}\:{ball}: \\ $$$$\varphi=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\theta \\ $$$$\frac{{d}\varphi}{{dt}}=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\frac{{d}\theta}{{dt}}=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\omega \\ $$$$\alpha=\frac{{d}^{\mathrm{2}} \varphi}{{dt}^{\mathrm{2}} }=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\omega\frac{{d}\omega}{{d}\theta} \\ $$$${U}=−\frac{{dX}}{{dt}}\:\:\:\:\:\left(\leftarrow\right) \\ $$$${u}=\frac{{dx}}{{dt}}=−{U}+\left({R}+{r}\right)\omega\:\mathrm{cos}\:\theta\:\:\:\:\:\left(\rightarrow\right) \\ $$$${v}=−\frac{{dy}}{{dt}}=\left({R}+{r}\right)\omega\:\mathrm{sin}\:\theta\:\:\:\:\:\left(\downarrow\right) \\ $$$${MU}={mu}=−{mU}+{m}\left({R}+{r}\right)\omega\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{U}=\frac{\left({R}+{r}\right)\omega\:\mathrm{cos}\:\theta}{{k}} \\ $$$${mg}\left({R}+{r}\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\frac{{MU}^{\mathrm{2}} }{\mathrm{2}}+\frac{{m}\left({u}^{\mathrm{2}} +{v}^{\mathrm{2}} \right)}{\mathrm{2}}+\frac{{I}}{\mathrm{2}}\left(\frac{{d}\varphi}{{dt}}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{g}\left({R}+{r}\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\left(\frac{{M}}{{m}}+\mathrm{1}\right){U}^{\mathrm{2}} +\left({R}+{r}\right)^{\mathrm{2}} \omega^{\mathrm{2}} −\mathrm{2}{U}\left({R}+{r}\right)\omega\:\mathrm{cos}\:\theta+\frac{\mathrm{2}\left({R}+{r}\right)^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{5}} \\ $$$$\mathrm{2}{g}\left({R}+{r}\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\left(\frac{{M}}{{m}}+\mathrm{1}\right){U}^{\mathrm{2}} +\frac{\mathrm{7}\left({R}+{r}\right)^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{5}}−\mathrm{2}{U}\left({R}+{r}\right)\omega\:\mathrm{cos}\:\theta \\ $$$$\mathrm{2}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\left({R}+{r}\right)\omega^{\mathrm{2}} \left(\frac{\mathrm{7}}{\mathrm{5}}−\frac{\mathrm{cos}^{\mathrm{2}} \:\theta}{\frac{{M}}{{m}}+\mathrm{1}}\right) \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{\mathrm{2}{kg}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\left({R}+{r}\right)\left(\frac{\mathrm{7}{k}}{\mathrm{5}}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)} \\ $$$$\omega\frac{{d}\omega}{{d}\theta}=\frac{{kg}\:\mathrm{sin}\:\theta\:\left(\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{2}\:\mathrm{cos}\:\theta+\frac{\mathrm{7}{k}}{\mathrm{5}}\right)}{\left({R}+{r}\right)\left(\frac{\mathrm{7}{k}}{\mathrm{5}}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$$−{fr}={I}\alpha \\ $$$$−{fr}=\frac{\mathrm{2}{mr}^{\mathrm{2}} }{\mathrm{5}}×\left(\mathrm{1}+\frac{{R}}{{r}}\right)\omega\frac{{d}\omega}{{d}\theta} \\ $$$${f}=−\frac{\mathrm{2}{m}\left({R}+{r}\right)}{\mathrm{5}}×\frac{{kg}\:\mathrm{sin}\:\theta\:\left(\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{2}\:\mathrm{cos}\:\theta+\frac{\mathrm{7}{k}}{\mathrm{5}}\right)}{\left({R}+{r}\right)\left(\frac{\mathrm{7}{k}}{\mathrm{5}}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${f}=−\frac{\mathrm{2}{kmg}\:\mathrm{sin}\:\theta\:\left(\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{2}\:\mathrm{cos}\:\theta+\frac{\mathrm{7}{k}}{\mathrm{5}}\right)}{\mathrm{5}\left(\frac{\mathrm{7}{k}}{\mathrm{5}}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${A}=\frac{{dU}}{{dt}}=\frac{\left({R}+{r}\right)\omega}{{k}}\left[−\omega\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\:\frac{{d}\omega}{{d}\theta}\right] \\ $$$${A}=\frac{{g}\:\mathrm{sin}\:\theta\left(−\mathrm{cos}^{\mathrm{3}} \:\theta+\frac{\mathrm{21}{k}}{\mathrm{5}}\:\mathrm{cos}\:\theta−\frac{\mathrm{14}{k}}{\mathrm{5}}\right)}{\left(\frac{\mathrm{7}{k}}{\mathrm{5}}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${N}\:\mathrm{sin}\:\theta+{f}\:\mathrm{cos}\:\theta={MA} \\ $$$${N}\:\mathrm{sin}\theta−\frac{\mathrm{2}{kmg}\:\mathrm{sin}\:\theta\:\left(\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{2}\:\mathrm{cos}\:\theta+\frac{\mathrm{7}{k}}{\mathrm{5}}\right)\mathrm{cos}\:\theta}{\mathrm{5}\left(\frac{\mathrm{7}{k}}{\mathrm{5}}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} }=\frac{{Mg}\:\mathrm{sin}\:\theta\left(−\mathrm{cos}^{\mathrm{3}} \:\theta+\frac{\mathrm{21}{k}}{\mathrm{5}}\:\mathrm{cos}\:\theta−\frac{\mathrm{14}{k}}{\mathrm{5}}\right)}{\left(\frac{\mathrm{7}{k}}{\mathrm{5}}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${N}=\mathrm{0}: \\ $$$$\mathrm{2}{k}\left(\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{2}\:\mathrm{cos}\:\theta+\frac{\mathrm{7}{k}}{\mathrm{5}}\right)\mathrm{cos}\:\theta+\mathrm{5}\left({k}−\mathrm{1}\right)\left(−\mathrm{cos}^{\mathrm{3}} \:\theta+\frac{\mathrm{21}{k}}{\mathrm{5}}\:\mathrm{cos}\:\theta−\frac{\mathrm{14}{k}}{\mathrm{5}}\right) \\ $$$$\mathrm{5}\left(−\mathrm{3}{k}+\mathrm{5}\right)\mathrm{cos}^{\mathrm{3}} \:\theta−\mathrm{20}{k}\:\mathrm{cos}^{\mathrm{2}} \:\theta+\left(\mathrm{119}{k}^{\mathrm{2}} −\mathrm{105}\right)\:\mathrm{cos}\:\theta−\mathrm{70}{k}\left({k}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\frac{{r}}{{R}+{r}}\leqslant\mathrm{cos}\:\theta<\mathrm{1} \\ $$$$\frac{{U}}{\:\sqrt{{g}\left({R}+{r}\right)}}=\mathrm{cos}\:\theta\sqrt{\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{{k}\left(\frac{\mathrm{7}{k}}{\mathrm{5}}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)}} \\ $$ | ||
Commented by aleks041103 last updated on 21/Dec/24 | ||
![]() | ||
$${In}\:{your}\:{energy}\:{conservation}\:{eqn}\:{you}\:{missed} \\ $$$${to}\:{account}\:{for}\:{the}\:{rotational}\:{kinetic}\:{energy}. \\ $$ | ||
Commented by mr W last updated on 22/Dec/24 | ||
![]() | ||
$${you}'{re}\:{right}.\:{now}\:{it}'{s}\:{fixed}. \\ $$ | ||
Commented by ajfour last updated on 21/Dec/24 | ||
Awesome Watch this another geometry video i made. https://youtu.be/JOiE3jnIDvs?si=ADUmXZ0DRrw7MxD_ | ||
Commented by mr W last updated on 21/Dec/24 | ||