Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 214498 by universe last updated on 10/Dec/24

Answered by mr W last updated on 10/Dec/24

=4π∫_0 ^∞ re^(−r^2 ) r^2 dr  =2π∫_0 ^∞ pe^(−p) dp  =2π(−pe^(−p) +∫_0 ^∞ e^(−p) dp)  =2π[−pe^(−p) −e^(−p) ]_0 ^∞   =2π

$$=\mathrm{4}\pi\int_{\mathrm{0}} ^{\infty} {re}^{−{r}^{\mathrm{2}} } {r}^{\mathrm{2}} {dr} \\ $$$$=\mathrm{2}\pi\int_{\mathrm{0}} ^{\infty} {pe}^{−{p}} {dp} \\ $$$$=\mathrm{2}\pi\left(−{pe}^{−{p}} +\int_{\mathrm{0}} ^{\infty} {e}^{−{p}} {dp}\right) \\ $$$$=\mathrm{2}\pi\left[−{pe}^{−{p}} −{e}^{−{p}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$=\mathrm{2}\pi \\ $$

Commented by universe last updated on 11/Dec/24

sorry sir i dont get it  sir can you explain little bit

$${sorry}\:{sir}\:{i}\:{dont}\:{get}\:{it} \\ $$$${sir}\:{can}\:{you}\:{explain}\:{little}\:{bit}\: \\ $$

Commented by mr W last updated on 11/Dec/24

(√(x^2 +y^2 +z^2 ))=r  dxdydz=dV=Sdr=4πr^2 dr  −∞<x,y,z<+∞ ⇒ 0≤r<+∞

$$\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }={r} \\ $$$${dxdydz}={dV}={Sdr}=\mathrm{4}\pi{r}^{\mathrm{2}} {dr} \\ $$$$−\infty<{x},{y},{z}<+\infty\:\Rightarrow\:\mathrm{0}\leqslant{r}<+\infty \\ $$

Commented by universe last updated on 11/Dec/24

thank u so much sir

$${thank}\:{u}\:{so}\:{much}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com