Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 214297 by ajfour last updated on 04/Dec/24

Commented by ajfour last updated on 04/Dec/24

the tangents are at right angles to  one another and corner maynot be  at semicircle centre.

$${the}\:{tangents}\:{are}\:{at}\:{right}\:{angles}\:{to} \\ $$$${one}\:{another}\:{and}\:{corner}\:{maynot}\:{be} \\ $$$${at}\:{semicircle}\:{centre}. \\ $$

Commented by mr W last updated on 05/Dec/24

��

Commented by ajfour last updated on 05/Dec/24

https://youtu.be/ys6xN29xNUM?si=9rk6nXD0GcmHTp9Z

Answered by mr W last updated on 04/Dec/24

Commented by mr W last updated on 06/Dec/24

a=1  R=3  b=r  (b/(tan (β/2)))=x+(√((R−b)^2 −b^2 ))=x+(√(R^2 −2Rb))  ⇒tan (β/2)=(b/(x+(√(R^2 −2Rb))))  similarly  ⇒tan (α/2)=(a/(−x+(√(R^2 −2Ra))))  (β/2)=(π/4)−(α/2)  tan (β/2)=((1−tan (a/2))/(1+tan (a/2)))  (b/(x+(√(R^2 −2Rb))))=((1−(a/(−x+(√(R^2 −2Ra)))))/(1+(a/(−x+(√(R^2 −2Ra))))))  (b/(x+(√(R^2 −2Rb))))=((−x+(√(R^2 −2Ra))−a)/(−x+(√(R^2 −2Ra))+a))  let α=(a/R), β=(b/R), ξ=(x/R)  (β/(ξ+(√(1−2β))))=((−ξ+(√(1−2α))−α)/(−ξ+(√(1−2α))+α))  let λ=(√(1−2β)), p=(√(1−2α))+α, q=(√(1−2α))−α  ((1−λ^2 )/(2(ξ+λ)))=((q−ξ)/(p−ξ))  (p−ξ)λ^2 +2(q−ξ)λ+(2q+1)ξ−[2ξ^2 −(2q+1)ξ+p]=0  λ=((ξ−q+(√((ξ−q)^2 +(p−ξ)[2ξ^2 −(2q+1)ξ+p])))/(p−ξ))  b={1−{((ξ−q+(√((ξ−q)^2 +(p−ξ)[2ξ^2 −(2q+1)ξ+p])))/(p−ξ))}^2 }(R/2)  b_(max) ≈0.66471561 at ξ=(x/R)≈−0.14031961  =================

$${a}=\mathrm{1} \\ $$$${R}=\mathrm{3} \\ $$$${b}={r} \\ $$$$\frac{{b}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}={x}+\sqrt{\left({R}−{b}\right)^{\mathrm{2}} −{b}^{\mathrm{2}} }={x}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rb}} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\beta}{\mathrm{2}}=\frac{{b}}{{x}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rb}}} \\ $$$${similarly} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}=\frac{{a}}{−{x}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Ra}}} \\ $$$$\frac{\beta}{\mathrm{2}}=\frac{\pi}{\mathrm{4}}−\frac{\alpha}{\mathrm{2}} \\ $$$$\mathrm{tan}\:\frac{\beta}{\mathrm{2}}=\frac{\mathrm{1}−\mathrm{tan}\:\frac{{a}}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:\frac{{a}}{\mathrm{2}}} \\ $$$$\frac{{b}}{{x}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rb}}}=\frac{\mathrm{1}−\frac{{a}}{−{x}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Ra}}}}{\mathrm{1}+\frac{{a}}{−{x}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Ra}}}} \\ $$$$\frac{{b}}{{x}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rb}}}=\frac{−{x}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Ra}}−{a}}{−{x}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Ra}}+{a}} \\ $$$${let}\:\alpha=\frac{{a}}{{R}},\:\beta=\frac{{b}}{{R}},\:\xi=\frac{{x}}{{R}} \\ $$$$\frac{\beta}{\xi+\sqrt{\mathrm{1}−\mathrm{2}\beta}}=\frac{−\xi+\sqrt{\mathrm{1}−\mathrm{2}\alpha}−\alpha}{−\xi+\sqrt{\mathrm{1}−\mathrm{2}\alpha}+\alpha} \\ $$$${let}\:\lambda=\sqrt{\mathrm{1}−\mathrm{2}\beta},\:{p}=\sqrt{\mathrm{1}−\mathrm{2}\alpha}+\alpha,\:{q}=\sqrt{\mathrm{1}−\mathrm{2}\alpha}−\alpha \\ $$$$\frac{\mathrm{1}−\lambda^{\mathrm{2}} }{\mathrm{2}\left(\xi+\lambda\right)}=\frac{{q}−\xi}{{p}−\xi} \\ $$$$\left({p}−\xi\right)\lambda^{\mathrm{2}} +\mathrm{2}\left({q}−\xi\right)\lambda+\left(\mathrm{2}{q}+\mathrm{1}\right)\xi−\left[\mathrm{2}\xi^{\mathrm{2}} −\left(\mathrm{2}{q}+\mathrm{1}\right)\xi+{p}\right]=\mathrm{0} \\ $$$$\lambda=\frac{\xi−{q}+\sqrt{\left(\xi−{q}\right)^{\mathrm{2}} +\left({p}−\xi\right)\left[\mathrm{2}\xi^{\mathrm{2}} −\left(\mathrm{2}{q}+\mathrm{1}\right)\xi+{p}\right]}}{{p}−\xi} \\ $$$${b}=\left\{\mathrm{1}−\left\{\frac{\xi−{q}+\sqrt{\left(\xi−{q}\right)^{\mathrm{2}} +\left({p}−\xi\right)\left[\mathrm{2}\xi^{\mathrm{2}} −\left(\mathrm{2}{q}+\mathrm{1}\right)\xi+{p}\right]}}{{p}−\xi}\right\}^{\mathrm{2}} \right\}\frac{{R}}{\mathrm{2}} \\ $$$${b}_{{max}} \approx\mathrm{0}.\mathrm{66471561}\:{at}\:\xi=\frac{{x}}{{R}}\approx−\mathrm{0}.\mathrm{14031961} \\ $$$$================= \\ $$

Commented by mr W last updated on 06/Dec/24

Commented by ajfour last updated on 06/Dec/24

(a/(R−a))=sin θ  (R−a)cos θ=acot (α/2)+x  R+x=bcot (β/2)  (α/2)+(β/2)=(π/4)  ((A+B)/(1−AB))=1   [  for  ((tan (α/2)+tan (β/2))/(1−tan (α/2)tan (β/2)))=1]  A+B=1−AB  (a/((R−a)cos θ−x))+(b/(R+x))         +((ab)/((R+x){(R−a)cos θ−x}))=1  or  a(R+x)+b(R−a)cos θ−bx+ab    +x^2 +{R−(R−a)cos θ}x−R(R−a)cos θ=0  or  x^2 +{a−b+R−(R−a)cos θ}x+a(b+R)         +(b−R)(R−a)cos θ=0  diff.  2x+{a−b+R−(R−a)cos θ}=0  or (R−a)cos θ−x=R+x+a−b  x=((b−a−R+(R−a)cos θ)/2)  b{(1/(R+x))+(a/((R+x){(R−a)cos θ−x))}     =1−(a/({(R−a)cos θ−x}))

$$\frac{{a}}{{R}−{a}}=\mathrm{sin}\:\theta \\ $$$$\left({R}−{a}\right)\mathrm{cos}\:\theta={a}\mathrm{cot}\:\frac{\alpha}{\mathrm{2}}+{x} \\ $$$${R}+{x}={b}\mathrm{cot}\:\frac{\beta}{\mathrm{2}} \\ $$$$\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}=\frac{\pi}{\mathrm{4}} \\ $$$$\frac{{A}+{B}}{\mathrm{1}−{AB}}=\mathrm{1}\:\:\:\left[\:\:{for}\:\:\frac{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}+\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}=\mathrm{1}\right] \\ $$$${A}+{B}=\mathrm{1}−{AB} \\ $$$$\frac{{a}}{\left({R}−{a}\right)\mathrm{cos}\:\theta−{x}}+\frac{{b}}{{R}+{x}} \\ $$$$\:\:\:\:\:\:\:+\frac{{ab}}{\left({R}+{x}\right)\left\{\left({R}−{a}\right)\mathrm{cos}\:\theta−{x}\right\}}=\mathrm{1} \\ $$$${or} \\ $$$${a}\left({R}+{x}\right)+{b}\left({R}−{a}\right)\mathrm{cos}\:\theta−{bx}+{ab} \\ $$$$\:\:+{x}^{\mathrm{2}} +\left\{{R}−\left({R}−{a}\right)\mathrm{cos}\:\theta\right\}{x}−{R}\left({R}−{a}\right)\mathrm{cos}\:\theta=\mathrm{0} \\ $$$${or} \\ $$$${x}^{\mathrm{2}} +\left\{{a}−{b}+{R}−\left({R}−{a}\right)\mathrm{cos}\:\theta\right\}{x}+{a}\left({b}+{R}\right) \\ $$$$\:\:\:\:\:\:\:+\left({b}−{R}\right)\left({R}−{a}\right)\mathrm{cos}\:\theta=\mathrm{0} \\ $$$${diff}. \\ $$$$\mathrm{2}{x}+\left\{{a}−{b}+{R}−\left({R}−{a}\right)\mathrm{cos}\:\theta\right\}=\mathrm{0} \\ $$$${or}\:\left({R}−{a}\right)\mathrm{cos}\:\theta−{x}={R}+{x}+{a}−{b} \\ $$$${x}=\frac{{b}−{a}−{R}+\left({R}−{a}\right)\mathrm{cos}\:\theta}{\mathrm{2}} \\ $$$${b}\left\{\frac{\mathrm{1}}{{R}+{x}}+\frac{{a}}{\left({R}+{x}\right)\left\{\left({R}−{a}\right)\mathrm{cos}\:\theta−{x}\right.}\right\} \\ $$$$\:\:\:=\mathrm{1}−\frac{{a}}{\left\{\left({R}−{a}\right)\mathrm{cos}\:\theta−{x}\right\}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com