Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 214163 by issac last updated on 29/Nov/24

Commented by mathkun last updated on 30/Nov/24

I am a begginer in Calculus.  How do you find the derivative of this function?  The equation for y with respect to x is not given.

$$\mathrm{I}\:\mathrm{am}\:\mathrm{a}\:\mathrm{begginer}\:\mathrm{in}\:\mathrm{Calculus}. \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function}? \\ $$$$\mathrm{The}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{y}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{x}\:\mathrm{is}\:\mathrm{not}\:\mathrm{given}. \\ $$

Commented by issac last updated on 30/Nov/24

 :)  it is nonsense to find the derivative  of that function ((dy(t))/dt) Because   function y(t) is not clearly specified  however we can find the point of   ((dy(t))/dt)=0  the meaning of the  differantial coefficient 0 is because  it can regarded as the maximum/minimum  value of function pls find wikipedia  documents Maximum and Minimum

$$\left.\::\right) \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{nonsense}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{derivative} \\ $$$$\mathrm{of}\:\mathrm{that}\:\mathrm{function}\:\frac{\mathrm{d}{y}\left({t}\right)}{\mathrm{d}{t}}\:\mathrm{Because}\: \\ $$$$\mathrm{function}\:{y}\left({t}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{clearly}\:\mathrm{specified} \\ $$$$\mathrm{however}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\: \\ $$$$\frac{\mathrm{d}{y}\left({t}\right)}{\mathrm{d}{t}}=\mathrm{0}\:\:\mathrm{the}\:\mathrm{meaning}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{differantial}\:\mathrm{coefficient}\:\mathrm{0}\:\mathrm{is}\:\mathrm{because} \\ $$$$\mathrm{it}\:\mathrm{can}\:\mathrm{regarded}\:\mathrm{as}\:\mathrm{the}\:\mathrm{maximum}/\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{function}\:\mathrm{pls}\:\mathrm{find}\:\mathrm{wikipedia} \\ $$$$\mathrm{documents}\:\mathrm{Maximum}\:\mathrm{and}\:\mathrm{Minimum} \\ $$

Commented by issac last updated on 30/Nov/24

and Quiz i′ve created is about  inflection point which are also where  we can find the point where the  Shape of a function change from a  concave function to a convex function  without having to differantial twice

$$\mathrm{and}\:\mathrm{Quiz}\:\mathrm{i}'\mathrm{ve}\:\mathrm{created}\:\mathrm{is}\:\mathrm{about} \\ $$$$\mathrm{inflection}\:\mathrm{point}\:\mathrm{which}\:\mathrm{are}\:\mathrm{also}\:\mathrm{where} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{where}\:\mathrm{the} \\ $$$$\mathrm{Shape}\:\mathrm{of}\:\mathrm{a}\:\mathrm{function}\:\mathrm{change}\:\mathrm{from}\:\mathrm{a} \\ $$$$\mathrm{concave}\:\mathrm{function}\:\mathrm{to}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{function} \\ $$$$\mathrm{without}\:\mathrm{having}\:\mathrm{to}\:\mathrm{differantial}\:\mathrm{twice} \\ $$

Answered by issac last updated on 29/Nov/24

additional problem!  f;R^1 →R^1  , f∈C^n  at t∈(−∞,∞)   (f is n time differantiable function)  find inflection point of  f(t)  where intervel t∈(0,∞)   Do you want try it?? :)

$$\mathrm{additional}\:\mathrm{problem}! \\ $$$${f};\mathbb{R}^{\mathrm{1}} \rightarrow\mathbb{R}^{\mathrm{1}} \:,\:{f}\in\boldsymbol{\mathcal{C}}^{{n}} \:\mathrm{at}\:{t}\in\left(−\infty,\infty\right)\: \\ $$$$\left({f}\:\mathrm{is}\:{n}\:\mathrm{time}\:\mathrm{differantiable}\:\mathrm{function}\right) \\ $$$$\mathrm{find}\:\mathrm{inflection}\:\mathrm{point}\:\mathrm{of}\:\:{f}\left({t}\right) \\ $$$$\mathrm{where}\:\mathrm{intervel}\:{t}\in\left(\mathrm{0},\infty\right)\: \\ $$$$\left.\mathrm{Do}\:\mathrm{you}\:\mathrm{want}\:\mathrm{try}\:\mathrm{it}??\::\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com