Question Number 214100 by ajfour last updated on 28/Nov/24 | ||
Answered by ajfour last updated on 29/Nov/24 | ||
Commented by ajfour last updated on 29/Nov/24 | ||
$$\mathrm{sin}\:\alpha=\frac{{a}}{\mathrm{2}{b}+{a}}=\frac{\mathrm{1}}{\mathrm{2}{s}+\mathrm{1}}\:\:\:\forall\:\:{s}=\frac{{b}}{{a}},\:{t}=\frac{{r}}{{a}} \\ $$$${A}=\mathrm{2}\sqrt{{ar}} \\ $$$${B}=\sqrt{\left({b}+{r}\right)^{\mathrm{2}} −\left({p}−{r}\right)^{\mathrm{2}} } \\ $$$${A}+{B}=\left({a}+{b}\right)\mathrm{cos}\:\alpha \\ $$$${B}^{\mathrm{2}} =\left\{{A}−\left({a}+{b}\right)\mathrm{cos}\:\alpha\right\}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} −{p}^{\mathrm{2}} +\mathrm{2}{r}\left({b}+{p}\right) \\ $$$$=\mathrm{4}{ar}+\left({a}+{b}\right)^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \alpha−\mathrm{4}\sqrt{{ar}}\left({a}+{b}\right)\mathrm{cos}\:\alpha \\ $$$${as}\:\:{p}={b}\mathrm{sin}\:\alpha \\ $$$$\mathrm{2}{rb}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)+\mathrm{4}\left({a}+{b}\right)\sqrt{{ar}}\mathrm{cos}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{4}{ar}+{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \alpha+\mathrm{2}{ab}\mathrm{cos}\:^{\mathrm{2}} \alpha \\ $$$${recalling}\:\:{s}=\frac{{b}}{{a}},\:{t}=\frac{{r}}{{a}} \\ $$$$\mathrm{2}{t}\left({s}+{s}\mathrm{sin}\:\alpha−\mathrm{2}\right)+\mathrm{4}\left(\mathrm{1}+{s}\right)\sqrt{{t}}\mathrm{cos}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−\left(\mathrm{1}+\mathrm{2}{s}\right)\mathrm{cos}\:^{\mathrm{2}} \alpha\:=\mathrm{0} \\ $$$$\sqrt{{t}}=−\frac{\left(\mathrm{1}+{s}\right)\mathrm{cos}\:\alpha}{{s}+{s}\mathrm{sin}\:\alpha−\mathrm{2}}\pm\sqrt{\left(\frac{\left(\mathrm{1}+{s}\right)\mathrm{cos}\:\alpha}{{s}+{s}\mathrm{sin}\:\alpha−\mathrm{2}}\right)^{\mathrm{2}} +\frac{\left(\mathrm{1}+\mathrm{2}{s}\right)\mathrm{cos}\:^{\mathrm{2}} \alpha}{\mathrm{2}\left({s}+{s}\mathrm{sin}\:\alpha−\mathrm{2}\right)}} \\ $$$${say}\:{a}=\mathrm{1},\:{b}=\mathrm{2}\:\: \\ $$$$\Rightarrow\:{s}=\mathrm{2},\:\:\mathrm{sin}\:\alpha=\frac{\mathrm{1}}{\mathrm{5}},\:\:\mathrm{cos}\:\alpha=\frac{\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{5}} \\ $$$$\sqrt{{t}}=−\mathrm{3}\sqrt{\mathrm{6}}+\mathrm{2}\sqrt{\mathrm{15}} \\ $$$${r}={t}=\mathrm{114}−\mathrm{36}\sqrt{\mathrm{10}} \\ $$$$\Rightarrow\:\:{r}\approx\:\mathrm{0}.\mathrm{1580}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$ | ||
Commented by mr W last updated on 29/Nov/24 | ||
$${p}=\frac{{ab}}{{a}+\mathrm{2}{b}} \\ $$$$\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −\left({a}−{p}\right)^{\mathrm{2}} }=\sqrt{\left({a}+{r}\right)^{\mathrm{2}} −\left({a}−{r}\right)^{\mathrm{2}} }+\sqrt{\left({b}+{r}\right)^{\mathrm{2}} −\left({p}−{r}\right)^{\mathrm{2}} } \\ $$$$\sqrt{{b}^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{2}{ap}−{p}^{\mathrm{2}} }=\mathrm{2}\sqrt{{ar}}+\sqrt{{b}^{\mathrm{2}} −{p}^{\mathrm{2}} +\mathrm{2}\left({b}+{p}\right){r}} \\ $$$$\sqrt{{b}^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{2}{ap}−{p}^{\mathrm{2}} }−\mathrm{2}\sqrt{{ar}}=\sqrt{{b}^{\mathrm{2}} −{p}^{\mathrm{2}} +\mathrm{2}\left({b}+{p}\right){r}} \\ $$$$\left(\mathrm{2}{a}−{b}−{p}\right){r}−\mathrm{2}\sqrt{{a}\left({b}+{p}\right)\left(\mathrm{2}{a}+{b}−{p}\right){r}}+{a}\left({b}+{p}\right)=\mathrm{0} \\ $$$$\sqrt{{r}}=\frac{\sqrt{{a}\left({b}+{p}\right)\left(\mathrm{2}{a}+{b}−{p}\right)}−\sqrt{{a}\left({b}+{p}\right)\left(\mathrm{2}{a}+{b}−{p}\right)−{a}\left({b}+{p}\right)\left(\mathrm{2}{a}−{b}−{p}\right)}}{\mathrm{2}{a}−{b}−{p}} \\ $$$$\sqrt{{r}}=\frac{\sqrt{{a}\left({b}+{p}\right)}\left(\sqrt{\mathrm{2}{a}+{b}−{p}}−\sqrt{\mathrm{2}{b}}\right)}{\mathrm{2}{a}−{b}−{p}} \\ $$$${r}=\frac{{a}\left({b}+{p}\right)\left(\sqrt{\mathrm{2}{a}+{b}−{p}}−\sqrt{\mathrm{2}{b}}\right)^{\mathrm{2}} }{\left(\mathrm{2}{a}−{b}−{p}\right)^{\mathrm{2}} } \\ $$$${r}=\frac{{a}\left({b}+\frac{{ab}}{{a}+\mathrm{2}{b}}\right)\left(\sqrt{\mathrm{2}{a}+{b}−\frac{{ab}}{{a}+\mathrm{2}{b}}}−\sqrt{\mathrm{2}{b}}\right)^{\mathrm{2}} }{\left(\mathrm{2}{a}−{b}−\frac{{ab}}{{a}+\mathrm{2}{b}}\right)^{\mathrm{2}} } \\ $$$${r}=\frac{{ab}\left({a}+{b}\right)\left(\sqrt{{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} }−\sqrt{\left({a}+\mathrm{2}{b}\right){b}}\right)^{\mathrm{2}} }{\left({a}^{\mathrm{2}} +{ab}−{b}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${r}=\frac{{ab}\left({a}+{b}\right)\left[{a}^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{3}{b}^{\mathrm{2}} −\mathrm{2}\sqrt{{b}\left({a}+\mathrm{2}{b}\right)\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)}\right]}{\left({a}^{\mathrm{2}} +{ab}−{b}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$ | ||
Commented by ajfour last updated on 29/Nov/24 | ||
Commented by ajfour last updated on 29/Nov/24 | ||
$${Now}\:{both}\:{of}\:{us}\:{have}\:{done}\:{better}! \\ $$ | ||
Answered by mr W last updated on 28/Nov/24 | ||
Commented by mr W last updated on 28/Nov/24 | ||
$${for}\:{maximum}\:{small}\:{circle}: \\ $$$${AF}\bot{FD} \\ $$$${FE}=\sqrt{\left({a}+{r}\right)^{\mathrm{2}} −\left({a}−{r}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{{ar}} \\ $$$$\left({a}+{b}\right){CD}^{\mathrm{2}} +{b}\left({a}+{r}\right)^{\mathrm{2}} =\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right] \\ $$$${CD}^{\mathrm{2}} =\frac{\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right]−{b}\left({a}+{r}\right)^{\mathrm{2}} }{{a}+{b}} \\ $$$${ED}=\sqrt{\frac{\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right]−{b}\left({a}+{r}\right)^{\mathrm{2}} }{{a}+{b}}−{r}^{\mathrm{2}} } \\ $$$${FD}=\mathrm{2}\sqrt{{ar}}+\sqrt{\frac{\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right]−{b}\left({a}+{r}\right)^{\mathrm{2}} }{{a}+{b}}−{r}^{\mathrm{2}} } \\ $$$${FD}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({a}+\mathrm{2}{b}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left\{\mathrm{2}\sqrt{{ar}}+\sqrt{\frac{\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right]−{b}\left({a}+{r}\right)^{\mathrm{2}} }{{a}+{b}}−{r}^{\mathrm{2}} }\right\}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({a}+\mathrm{2}{b}\right)^{\mathrm{2}} \\ $$ | ||