Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 214093 by ajfour last updated on 27/Nov/24

Commented by ajfour last updated on 27/Nov/24

If A, B, C in some time come in eql.  △ position then how are v and u  related? After what time this  happens. At t=0, all are  at the origin.

$${If}\:{A},\:{B},\:{C}\:{in}\:{some}\:{time}\:{come}\:{in}\:{eql}. \\ $$$$\bigtriangleup\:{position}\:{then}\:{how}\:{are}\:{v}\:{and}\:{u} \\ $$$${related}?\:{After}\:{what}\:{time}\:{this} \\ $$$${happens}.\:{At}\:{t}=\mathrm{0},\:{all}\:{are}\:\:{at}\:{the}\:{origin}. \\ $$

Answered by ajfour last updated on 28/Nov/24

y_A =ut  ,  x_B =vt  x_C =Rsin{(((u+v)t)/R)}  y_C =R−Rcos {(((u+v)t)/R)}  M(((vt)/2), ((ut)/2))  tan φ=(u/v)  line MC  y−((ut)/2)=(u/v)(x−((vt)/2))  R−Rcos {(((u+v)t)/R)}        =((ut)/2)+(u/v)[Rsin{(((u+v)t)/R)}−((vt)/2)]  say ω=((u+v)/R)   v(1−cos ωt)=usin ωt    then we also must have  {Rsin (ωt)−((vt)/2)}^2 +{R−Rcos (ωt)−((ut)/2)}^2      =(((3t^2 )/4))(u^2 +v^2 )  ⇒  {Rsin (ωt)−((vt)/2)}(√(1+(v^2 /u^2 )))=(((√3)/2)t)(√(u^2 +v^2 ))   Rsin (ωt)−((vt)/2)=(((√3)ut)/2)  ⇒ {v−u((((√3)u+v)/(2R)))t}^2                =v^2 −v^2 ((((√3)u+v)/(2R)))^2 t^2   ⇒  2uv=((((√3)u+v)/(2R)))t(u^2 +v^2 )  ⇒  t=((4uvR)/((u^2 +v^2 )((√3)u+v)))  ...

$${y}_{{A}} ={ut}\:\:,\:\:{x}_{{B}} ={vt} \\ $$$${x}_{{C}} ={R}\mathrm{sin}\left\{\frac{\left({u}+{v}\right){t}}{{R}}\right\} \\ $$$${y}_{{C}} ={R}−{R}\mathrm{cos}\:\left\{\frac{\left({u}+{v}\right){t}}{{R}}\right\} \\ $$$${M}\left(\frac{{vt}}{\mathrm{2}},\:\frac{{ut}}{\mathrm{2}}\right) \\ $$$$\mathrm{tan}\:\phi=\frac{{u}}{{v}} \\ $$$${line}\:{MC} \\ $$$${y}−\frac{{ut}}{\mathrm{2}}=\frac{{u}}{{v}}\left({x}−\frac{{vt}}{\mathrm{2}}\right) \\ $$$${R}−{R}\mathrm{cos}\:\left\{\frac{\left({u}+{v}\right){t}}{{R}}\right\} \\ $$$$\:\:\:\:\:\:=\frac{{ut}}{\mathrm{2}}+\frac{{u}}{{v}}\left[{R}\mathrm{sin}\left\{\frac{\left({u}+{v}\right){t}}{{R}}\right\}−\frac{{vt}}{\mathrm{2}}\right] \\ $$$${say}\:\omega=\frac{{u}+{v}}{{R}}\: \\ $$$${v}\left(\mathrm{1}−\mathrm{cos}\:\omega{t}\right)={u}\mathrm{sin}\:\omega{t} \\ $$$$\:\:{then}\:{we}\:{also}\:{must}\:{have} \\ $$$$\left\{{R}\mathrm{sin}\:\left(\omega{t}\right)−\frac{{vt}}{\mathrm{2}}\right\}^{\mathrm{2}} +\left\{{R}−{R}\mathrm{cos}\:\left(\omega{t}\right)−\frac{{ut}}{\mathrm{2}}\right\}^{\mathrm{2}} \\ $$$$\:\:\:=\left(\frac{\mathrm{3}{t}^{\mathrm{2}} }{\mathrm{4}}\right)\left({u}^{\mathrm{2}} +{v}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:\left\{{R}\mathrm{sin}\:\left(\omega{t}\right)−\frac{{vt}}{\mathrm{2}}\right\}\sqrt{\mathrm{1}+\frac{{v}^{\mathrm{2}} }{{u}^{\mathrm{2}} }}=\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\right)\sqrt{{u}^{\mathrm{2}} +{v}^{\mathrm{2}} } \\ $$$$\:{R}\mathrm{sin}\:\left(\omega{t}\right)−\frac{{vt}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{ut}}{\mathrm{2}} \\ $$$$\Rightarrow\:\left\{{v}−{u}\left(\frac{\sqrt{\mathrm{3}}{u}+{v}}{\mathrm{2}{R}}\right){t}\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:={v}^{\mathrm{2}} −{v}^{\mathrm{2}} \left(\frac{\sqrt{\mathrm{3}}{u}+{v}}{\mathrm{2}{R}}\right)^{\mathrm{2}} {t}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{2}{uv}=\left(\frac{\sqrt{\mathrm{3}}{u}+{v}}{\mathrm{2}{R}}\right){t}\left({u}^{\mathrm{2}} +{v}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:{t}=\frac{\mathrm{4}{uvR}}{\left({u}^{\mathrm{2}} +{v}^{\mathrm{2}} \right)\left(\sqrt{\mathrm{3}}{u}+{v}\right)} \\ $$$$... \\ $$

Answered by mr W last updated on 28/Nov/24

say s=side length of equilateral  at time t:  x_A =0, y_A =ut  x_B =vt, y_B =0  x_C =r sin (((u+v)t)/r), y_C =r(1−cos (((u+v)t)/r))  let α=((ut)/r), β=((vt)/r), λ=(s/r)  AB^2 =s^2 =(ut)^2 +(vt)^2   ⇒λ^2 =α^2 +β^2    ...(i)  AC^2 =s^2 =r^2  sin^2  (((u+v)t)/r)+(r−r cos (((u+v)t)/r)−ut)^2   ⇒λ^2 = sin^2  (α+β)+[1−cos (α+β)−α]^2    ...(ii)  BC^2 =s^2 =(r sin (((u+v)t)/r)−vt)^2 +(r−r cos (((u+v)t)/r))^2   ⇒λ^2 =[sin (α+β)−β]^2 +[1−cos (α+β)]^2    ...(iii)  (i) and (ii):  sin^2  (α+β)+[1−cos (α+β)−α]^2 =α^2 +β^2   ⇒(1−α)[1−cos (α+β)]=(β^2 /2)   ...(I)  (i) and (iii):  [sin (α+β)−β]^2 +[1−cos (α+β)]^2 =α^2 +β^2   ⇒cos (α+β)+β sin (α+β)=1−(α^2 /2)   ...(II)

$${say}\:{s}={side}\:{length}\:{of}\:{equilateral} \\ $$$${at}\:{time}\:{t}: \\ $$$${x}_{{A}} =\mathrm{0},\:{y}_{{A}} ={ut} \\ $$$${x}_{{B}} ={vt},\:{y}_{{B}} =\mathrm{0} \\ $$$${x}_{{C}} ={r}\:\mathrm{sin}\:\frac{\left({u}+{v}\right){t}}{{r}},\:{y}_{{C}} ={r}\left(\mathrm{1}−\mathrm{cos}\:\frac{\left({u}+{v}\right){t}}{{r}}\right) \\ $$$${let}\:\alpha=\frac{{ut}}{{r}},\:\beta=\frac{{vt}}{{r}},\:\lambda=\frac{{s}}{{r}} \\ $$$${AB}^{\mathrm{2}} ={s}^{\mathrm{2}} =\left({ut}\right)^{\mathrm{2}} +\left({vt}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\lambda^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$${AC}^{\mathrm{2}} ={s}^{\mathrm{2}} ={r}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\frac{\left({u}+{v}\right){t}}{{r}}+\left({r}−{r}\:\mathrm{cos}\:\frac{\left({u}+{v}\right){t}}{{r}}−{ut}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\lambda^{\mathrm{2}} =\:\mathrm{sin}^{\mathrm{2}} \:\left(\alpha+\beta\right)+\left[\mathrm{1}−\mathrm{cos}\:\left(\alpha+\beta\right)−\alpha\right]^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$${BC}^{\mathrm{2}} ={s}^{\mathrm{2}} =\left({r}\:\mathrm{sin}\:\frac{\left({u}+{v}\right){t}}{{r}}−{vt}\right)^{\mathrm{2}} +\left({r}−{r}\:\mathrm{cos}\:\frac{\left({u}+{v}\right){t}}{{r}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\lambda^{\mathrm{2}} =\left[\mathrm{sin}\:\left(\alpha+\beta\right)−\beta\right]^{\mathrm{2}} +\left[\mathrm{1}−\mathrm{cos}\:\left(\alpha+\beta\right)\right]^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$$\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\left(\alpha+\beta\right)+\left[\mathrm{1}−\mathrm{cos}\:\left(\alpha+\beta\right)−\alpha\right]^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{1}−\alpha\right)\left[\mathrm{1}−\mathrm{cos}\:\left(\alpha+\beta\right)\right]=\frac{\beta^{\mathrm{2}} }{\mathrm{2}}\:\:\:...\left({I}\right) \\ $$$$\left({i}\right)\:{and}\:\left({iii}\right): \\ $$$$\left[\mathrm{sin}\:\left(\alpha+\beta\right)−\beta\right]^{\mathrm{2}} +\left[\mathrm{1}−\mathrm{cos}\:\left(\alpha+\beta\right)\right]^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{cos}\:\left(\alpha+\beta\right)+\beta\:\mathrm{sin}\:\left(\alpha+\beta\right)=\mathrm{1}−\frac{\alpha^{\mathrm{2}} }{\mathrm{2}}\:\:\:...\left({II}\right) \\ $$

Commented by mr W last updated on 28/Nov/24

Commented by mr W last updated on 28/Nov/24

these equations can only be solved  nummerically.  from the graph above we can see  that there is no solution   (intersection of both curves) when  A and B move in positive direction.  there are two solutions when they  move in negative direction.  following graphs show these two  solutions.    solution 1:  α=−0.2330, β=−1.9914  (u/v)=(α/β)≈0.117  solution 2:  α=−2.5130, β=−2.3885  (u/v)=(α/β)≈0.741

$${these}\:{equations}\:{can}\:{only}\:{be}\:{solved} \\ $$$${nummerically}. \\ $$$${from}\:{the}\:{graph}\:{above}\:{we}\:{can}\:{see} \\ $$$${that}\:{there}\:{is}\:{no}\:{solution}\: \\ $$$$\left({intersection}\:{of}\:{both}\:{curves}\right)\:{when} \\ $$$${A}\:{and}\:{B}\:{move}\:{in}\:{positive}\:{direction}. \\ $$$${there}\:{are}\:{two}\:{solutions}\:{when}\:{they} \\ $$$${move}\:{in}\:{negative}\:{direction}. \\ $$$${following}\:{graphs}\:{show}\:{these}\:{two} \\ $$$${solutions}. \\ $$$$ \\ $$$${solution}\:\mathrm{1}: \\ $$$$\alpha=−\mathrm{0}.\mathrm{2330},\:\beta=−\mathrm{1}.\mathrm{9914} \\ $$$$\frac{{u}}{{v}}=\frac{\alpha}{\beta}\approx\mathrm{0}.\mathrm{117} \\ $$$${solution}\:\mathrm{2}: \\ $$$$\alpha=−\mathrm{2}.\mathrm{5130},\:\beta=−\mathrm{2}.\mathrm{3885} \\ $$$$\frac{{u}}{{v}}=\frac{\alpha}{\beta}\approx\mathrm{0}.\mathrm{741} \\ $$

Commented by mr W last updated on 28/Nov/24

Commented by mr W last updated on 28/Nov/24

Commented by ajfour last updated on 28/Nov/24

Commented by ajfour last updated on 28/Nov/24

Isnt something like this possible?

$${Isnt}\:{something}\:{like}\:{this}\:{possible}? \\ $$

Commented by mr W last updated on 28/Nov/24

there are infinite equilaterals. but  all three points should reach the  vertexes at the same time. under  this condition there are only two  suitable cases as shown above.

$${there}\:{are}\:{infinite}\:{equilaterals}.\:{but} \\ $$$${all}\:{three}\:{points}\:{should}\:{reach}\:{the} \\ $$$${vertexes}\:{at}\:{the}\:{same}\:{time}.\:{under} \\ $$$${this}\:{condition}\:{there}\:{are}\:{only}\:{two} \\ $$$${suitable}\:{cases}\:{as}\:{shown}\:{above}. \\ $$

Commented by mr W last updated on 29/Nov/24

Commented by mr W last updated on 29/Nov/24

it′s a geometric problem.  OC^(⌢) =∣OA∣+∣OB∣ and ∣AB∣=∣BC∣=∣CA∣

$${it}'{s}\:{a}\:{geometric}\:{problem}. \\ $$$$\overset{\frown} {{OC}}=\mid{OA}\mid+\mid{OB}\mid\:{and}\:\mid{AB}\mid=\mid{BC}\mid=\mid{CA}\mid \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com