Question Number 214059 by RoseAli last updated on 25/Nov/24 | ||
Answered by a.lgnaoui last updated on 25/Nov/24 | ||
$$\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}−\mathrm{5}\right)\:=\mathrm{0}\:\:\:\: \\ $$$$\: \\ $$$$\begin{cases}{\mathrm{x}_{\mathrm{1}} \:\:\:\:=\left\{\frac{\mathrm{10}}{\mathrm{10}}\:\:,\frac{−\mathrm{10}}{−\mathrm{10}}\right\}}\\{\mathrm{x}_{\mathrm{2}} \:\:\:=\left\{\frac{\mathrm{50}}{\mathrm{10}}\:\:\:\:,\frac{−\mathrm{50}}{−\mathrm{10}}\:\:\:\right\}\:\:}\end{cases} \\ $$$$\boldsymbol{\mathrm{S}}=\left\{\frac{−\mathrm{50}}{−\mathrm{10}}\:;\:\:\frac{−\mathrm{10}}{−\mathrm{10}}\:\:;\:\frac{+\mathrm{10}}{+\mathrm{10}}\:;\:\frac{+\mathrm{50}}{+\mathrm{10}}\right\} \\ $$$$ \\ $$ | ||
Answered by A5T last updated on 25/Nov/24 | ||
$$\left({x}−\mathrm{3}\right)^{\mathrm{2}} \equiv\mathrm{4}\left({mod}\:\mathrm{10}\right)\Rightarrow{x}=\mathrm{5},\mathrm{1} \\ $$ | ||