Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 214047 by ajfour last updated on 25/Nov/24

Commented by ajfour last updated on 25/Nov/24

 The L shaped rigid scale can turn   about the pivot on a frictionless table.   The small mass m hits and after   rebounding happens to find the   other end. Find θ, if α is measured.  (Take coefficient of restitution e)

$$\:{The}\:{L}\:{shaped}\:{rigid}\:{scale}\:{can}\:{turn}\: \\ $$$${about}\:{the}\:{pivot}\:{on}\:{a}\:{frictionless}\:{table}. \\ $$$$\:{The}\:{small}\:{mass}\:{m}\:{hits}\:{and}\:{after}\: \\ $$$${rebounding}\:{happens}\:{to}\:{find}\:{the} \\ $$$$\:{other}\:{end}.\:{Find}\:\theta,\:{if}\:\alpha\:{is}\:{measured}. \\ $$$$\left({Take}\:{coefficient}\:{of}\:{restitution}\:\boldsymbol{{e}}\right) \\ $$

Answered by mr W last updated on 25/Nov/24

Commented by mr W last updated on 27/Nov/24

u=velocity of ball before collision  v=velocity of ball after collision  ω=angular velocity of L−frame         after collision  u sin θ=v sin φ   ...(i)  e=((v cos φ+((ωl)/2))/(u cos θ))  ⇒eu cos θ=v cos φ+((lω)/2)   ...(ii)  mu cos θ×(l/2)=((Ml^2 ω)/3)−mv cos φ×(l/2)  ⇒u cos θ+v cos φ=((2Mlω)/(3m))   ...(iii)  t=(α/ω)  (l/2)−l sin α=v sin φ×t  ((lω)/α)((1/2)−sin α)=v sin φ  ⇒((1/(2α))−((sin α)/α))lω=u sin θ   ...(iv)  l cos α=v cos φ ×t  ((lω cos α)/α)=v cos φ   ...(v)  we have 5 equations for 6 variables:  u, v, ω, θ, φ, α    (iii):  u cos θ+((lω cos α)/α)=((2Mlω)/(3m))  (((2M)/(3m))−((cos α)/α))lω=u cos θ   ...(vi)  (v) into (ii):  eu cos θ=((lω cos α)/α)+((lω)/2)  ⇒(((cos α)/α)+(1/2))((lω)/e)=u cos θ  from (vi):  (((cos α)/α)+(1/2))((lω)/e)=(((2M)/(3m))−((cos α)/α))lω  (1+(1/e))((cos α)/α)=((2M)/(3m))−(1/(2e))  ⇒((cos α)/α)=((((2M)/(3m))−(1/(2e)))/(1+(1/e)))   ...(vii)  since α<(π/6),  ((((2M)/(3m))−(1/(2e)))/(1+(1/e)))>(((√3)×6)/(2×π))  ⇒ (M/m)>((9(√3)(1+(1/e)))/(2π))+(3/(4e))  (iv)/(vi):  (((1/(2α))−((sin α)/α))/(((2M)/(3m))−((cos α)/α)))=tan θ  ⇒θ=tan^(−1) (((1/2)−sin α)/(((2αM)/(3m))−cos α))   ...(viii)  from (iv):  ((lω)/u)=((α sin θ)/((1/2)−sin α))   ...(ix)  (i)^2 +(v)^2 :  (u sin θ)^2 +(((lω cos α)/α))^2 =v^2   (v^2 /u^2 )=sin^2  θ+(((lω)/u))^2 (((cos α)/α))^2   ⇒(v/u)=sin θ(√(1+((α/((1/2)−sin α)))^2 (((((2M)/(3m))−(1/(2e)))/(1+(1/e))))^2 ))   ...(x)  (i)/(v):  ((u sin θ)/((lω cos α)/α))=tan φ  tan φ=((sin θ)/((((lω)/u))(((cos α)/α))))=((((1/2)−sin α)/α))(((1+(1/e))/(((2M)/(3m))−(1/(2e)))))   ⇒φ=tan^(−1) ((((1/2)−sin α)/α))(((1+(1/e))/(((2M)/(3m))−(1/(2e)))))   ...(xi)

$${u}={velocity}\:{of}\:{ball}\:{before}\:{collision} \\ $$$${v}={velocity}\:{of}\:{ball}\:{after}\:{collision} \\ $$$$\omega={angular}\:{velocity}\:{of}\:{L}−{frame} \\ $$$$\:\:\:\:\:\:\:{after}\:{collision} \\ $$$${u}\:\mathrm{sin}\:\theta={v}\:\mathrm{sin}\:\phi\:\:\:...\left({i}\right) \\ $$$${e}=\frac{{v}\:\mathrm{cos}\:\phi+\frac{\omega{l}}{\mathrm{2}}}{{u}\:\mathrm{cos}\:\theta} \\ $$$$\Rightarrow{eu}\:\mathrm{cos}\:\theta={v}\:\mathrm{cos}\:\phi+\frac{{l}\omega}{\mathrm{2}}\:\:\:...\left({ii}\right) \\ $$$${mu}\:\mathrm{cos}\:\theta×\frac{{l}}{\mathrm{2}}=\frac{{Ml}^{\mathrm{2}} \omega}{\mathrm{3}}−{mv}\:\mathrm{cos}\:\phi×\frac{{l}}{\mathrm{2}} \\ $$$$\Rightarrow{u}\:\mathrm{cos}\:\theta+{v}\:\mathrm{cos}\:\phi=\frac{\mathrm{2}{Ml}\omega}{\mathrm{3}{m}}\:\:\:...\left({iii}\right) \\ $$$${t}=\frac{\alpha}{\omega} \\ $$$$\frac{{l}}{\mathrm{2}}−{l}\:\mathrm{sin}\:\alpha={v}\:\mathrm{sin}\:\phi×{t} \\ $$$$\frac{{l}\omega}{\alpha}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\alpha\right)={v}\:\mathrm{sin}\:\phi \\ $$$$\Rightarrow\left(\frac{\mathrm{1}}{\mathrm{2}\alpha}−\frac{\mathrm{sin}\:\alpha}{\alpha}\right){l}\omega={u}\:\mathrm{sin}\:\theta\:\:\:...\left({iv}\right) \\ $$$${l}\:\mathrm{cos}\:\alpha={v}\:\mathrm{cos}\:\phi\:×{t} \\ $$$$\frac{{l}\omega\:\mathrm{cos}\:\alpha}{\alpha}={v}\:\mathrm{cos}\:\phi\:\:\:...\left({v}\right) \\ $$$${we}\:{have}\:\mathrm{5}\:{equations}\:{for}\:\mathrm{6}\:{variables}: \\ $$$${u},\:{v},\:\omega,\:\theta,\:\phi,\:\alpha \\ $$$$ \\ $$$$\left({iii}\right): \\ $$$${u}\:\mathrm{cos}\:\theta+\frac{{l}\omega\:\mathrm{cos}\:\alpha}{\alpha}=\frac{\mathrm{2}{Ml}\omega}{\mathrm{3}{m}} \\ $$$$\left(\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{cos}\:\alpha}{\alpha}\right){l}\omega={u}\:\mathrm{cos}\:\theta\:\:\:...\left({vi}\right) \\ $$$$\left({v}\right)\:{into}\:\left({ii}\right): \\ $$$${eu}\:\mathrm{cos}\:\theta=\frac{{l}\omega\:\mathrm{cos}\:\alpha}{\alpha}+\frac{{l}\omega}{\mathrm{2}} \\ $$$$\Rightarrow\left(\frac{\mathrm{cos}\:\alpha}{\alpha}+\frac{\mathrm{1}}{\mathrm{2}}\right)\frac{{l}\omega}{{e}}={u}\:\mathrm{cos}\:\theta \\ $$$${from}\:\left({vi}\right): \\ $$$$\left(\frac{\mathrm{cos}\:\alpha}{\alpha}+\frac{\mathrm{1}}{\mathrm{2}}\right)\frac{{l}\omega}{{e}}=\left(\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{cos}\:\alpha}{\alpha}\right){l}\omega \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{e}}\right)\frac{\mathrm{cos}\:\alpha}{\alpha}=\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{1}}{\mathrm{2}{e}} \\ $$$$\Rightarrow\frac{\mathrm{cos}\:\alpha}{\alpha}=\frac{\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{1}}{\mathrm{2}{e}}}{\mathrm{1}+\frac{\mathrm{1}}{{e}}}\:\:\:...\left({vii}\right) \\ $$$${since}\:\alpha<\frac{\pi}{\mathrm{6}},\:\:\frac{\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{1}}{\mathrm{2}{e}}}{\mathrm{1}+\frac{\mathrm{1}}{{e}}}>\frac{\sqrt{\mathrm{3}}×\mathrm{6}}{\mathrm{2}×\pi} \\ $$$$\Rightarrow\:\frac{{M}}{{m}}>\frac{\mathrm{9}\sqrt{\mathrm{3}}\left(\mathrm{1}+\frac{\mathrm{1}}{{e}}\right)}{\mathrm{2}\pi}+\frac{\mathrm{3}}{\mathrm{4}{e}} \\ $$$$\left({iv}\right)/\left({vi}\right): \\ $$$$\frac{\frac{\mathrm{1}}{\mathrm{2}\alpha}−\frac{\mathrm{sin}\:\alpha}{\alpha}}{\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{cos}\:\alpha}{\alpha}}=\mathrm{tan}\:\theta \\ $$$$\Rightarrow\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\alpha}{\frac{\mathrm{2}\alpha{M}}{\mathrm{3}{m}}−\mathrm{cos}\:\alpha}\:\:\:...\left({viii}\right) \\ $$$${from}\:\left({iv}\right): \\ $$$$\frac{{l}\omega}{{u}}=\frac{\alpha\:\mathrm{sin}\:\theta}{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\alpha}\:\:\:...\left({ix}\right) \\ $$$$\left({i}\right)^{\mathrm{2}} +\left({v}\right)^{\mathrm{2}} : \\ $$$$\left({u}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} +\left(\frac{{l}\omega\:\mathrm{cos}\:\alpha}{\alpha}\right)^{\mathrm{2}} ={v}^{\mathrm{2}} \\ $$$$\frac{{v}^{\mathrm{2}} }{{u}^{\mathrm{2}} }=\mathrm{sin}^{\mathrm{2}} \:\theta+\left(\frac{{l}\omega}{{u}}\right)^{\mathrm{2}} \left(\frac{\mathrm{cos}\:\alpha}{\alpha}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{v}}{{u}}=\mathrm{sin}\:\theta\sqrt{\mathrm{1}+\left(\frac{\alpha}{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\alpha}\right)^{\mathrm{2}} \left(\frac{\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{1}}{\mathrm{2}{e}}}{\mathrm{1}+\frac{\mathrm{1}}{{e}}}\right)^{\mathrm{2}} }\:\:\:...\left({x}\right) \\ $$$$\left({i}\right)/\left({v}\right): \\ $$$$\frac{{u}\:\mathrm{sin}\:\theta}{\frac{{l}\omega\:\mathrm{cos}\:\alpha}{\alpha}}=\mathrm{tan}\:\phi \\ $$$$\mathrm{tan}\:\phi=\frac{\mathrm{sin}\:\theta}{\left(\frac{{l}\omega}{{u}}\right)\left(\frac{\mathrm{cos}\:\alpha}{\alpha}\right)}=\left(\frac{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\alpha}{\alpha}\right)\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{{e}}}{\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{1}}{\mathrm{2}{e}}}\right)\: \\ $$$$\Rightarrow\phi=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\alpha}{\alpha}\right)\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{{e}}}{\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{1}}{\mathrm{2}{e}}}\right)\:\:\:...\left({xi}\right) \\ $$

Commented by mr W last updated on 27/Nov/24

example:  (M/m)=8, e=0.75  ⇒α≈0.3370≈19.31°  ⇒θ≈0.1958≈11.22°  ⇒φ≈0.2462≈14.11°  ⇒(v/u)≈0.7986  ⇒((lω)/u)≈0.3873

$${example}: \\ $$$$\frac{{M}}{{m}}=\mathrm{8},\:{e}=\mathrm{0}.\mathrm{75} \\ $$$$\Rightarrow\alpha\approx\mathrm{0}.\mathrm{3370}\approx\mathrm{19}.\mathrm{31}° \\ $$$$\Rightarrow\theta\approx\mathrm{0}.\mathrm{1958}\approx\mathrm{11}.\mathrm{22}° \\ $$$$\Rightarrow\phi\approx\mathrm{0}.\mathrm{2462}\approx\mathrm{14}.\mathrm{11}° \\ $$$$\Rightarrow\frac{{v}}{{u}}\approx\mathrm{0}.\mathrm{7986} \\ $$$$\Rightarrow\frac{{l}\omega}{{u}}\approx\mathrm{0}.\mathrm{3873} \\ $$

Commented by ajfour last updated on 26/Nov/24

s^2 =l^2 +(l^2 /4)−(l^2 /2)sin α  s^2 =(l^2 /4)(3−2sin α)=v^2 ((α^2 /ω^2 ))  ⇒  (s/(αl))=(v/(ωl))=((√(3−2sin α))/(2α))  mu((l/2)cos θ)=((Ml^2 ω)/3)−mv((l/2))cos φ  usin θ=vsin φ  &  m((u/v))((l/2)cos θ)=((Ml^2 )/3)((ω/v))−mcos φ((l/2))  ((sin φcos θ)/(sin θ))+cos φ=((2M)/(3m))(((αl)/s))  cot θ((l/2)−lsin α)+lcos α=(((2M)/(3m)))αl  cot θ=(((((2M)/(3m)))α−cos α)/((1/2)−sin α))           tan θ = (((1/2)−sin α)/((((2M)/(3m)))α−cos α))

$${s}^{\mathrm{2}} ={l}^{\mathrm{2}} +\frac{{l}^{\mathrm{2}} }{\mathrm{4}}−\frac{{l}^{\mathrm{2}} }{\mathrm{2}}\mathrm{sin}\:\alpha \\ $$$${s}^{\mathrm{2}} =\frac{{l}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{3}−\mathrm{2sin}\:\alpha\right)={v}^{\mathrm{2}} \left(\frac{\alpha^{\mathrm{2}} }{\omega^{\mathrm{2}} }\right) \\ $$$$\Rightarrow\:\:\frac{{s}}{\alpha{l}}=\frac{{v}}{\omega{l}}=\frac{\sqrt{\mathrm{3}−\mathrm{2sin}\:\alpha}}{\mathrm{2}\alpha} \\ $$$${mu}\left(\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta\right)=\frac{{Ml}^{\mathrm{2}} \omega}{\mathrm{3}}−{mv}\left(\frac{{l}}{\mathrm{2}}\right)\mathrm{cos}\:\phi \\ $$$${u}\mathrm{sin}\:\theta={v}\mathrm{sin}\:\phi \\ $$$$\& \\ $$$${m}\left(\frac{{u}}{{v}}\right)\left(\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta\right)=\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}}\left(\frac{\omega}{{v}}\right)−{m}\mathrm{cos}\:\phi\left(\frac{{l}}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{sin}\:\phi\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}+\mathrm{cos}\:\phi=\frac{\mathrm{2}{M}}{\mathrm{3}{m}}\left(\frac{\alpha{l}}{{s}}\right) \\ $$$$\mathrm{cot}\:\theta\left(\frac{{l}}{\mathrm{2}}−{l}\mathrm{sin}\:\alpha\right)+{l}\mathrm{cos}\:\alpha=\left(\frac{\mathrm{2}{M}}{\mathrm{3}{m}}\right)\alpha{l} \\ $$$$\mathrm{cot}\:\theta=\frac{\left(\frac{\mathrm{2}{M}}{\mathrm{3}{m}}\right)\alpha−\mathrm{cos}\:\alpha}{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\alpha} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{tan}\:\theta\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\alpha}{\left(\frac{\mathrm{2}{M}}{\mathrm{3}{m}}\right)\alpha−\mathrm{cos}\:\alpha}\:\:\: \\ $$

Commented by ajfour last updated on 26/Nov/24

yeah! And I got the same, another way, Sir.

Commented by mr W last updated on 26/Nov/24

can you please check following:  α is not independent. it is given  through  ((cos α)/α)=((((2M)/(3m))−(1/(2e)))/(1+(1/e)))

$${can}\:{you}\:{please}\:{check}\:{following}: \\ $$$$\alpha\:{is}\:{not}\:{independent}.\:{it}\:{is}\:{given} \\ $$$${through} \\ $$$$\frac{\mathrm{cos}\:\alpha}{\alpha}=\frac{\frac{\mathrm{2}{M}}{\mathrm{3}{m}}−\frac{\mathrm{1}}{\mathrm{2}{e}}}{\mathrm{1}+\frac{\mathrm{1}}{{e}}} \\ $$

Commented by ajfour last updated on 26/Nov/24

hinge reaction is also there, i think  frame is not free, so this should not  apply.

$${hinge}\:{reaction}\:{is}\:{also}\:{there},\:{i}\:{think} \\ $$$${frame}\:{is}\:{not}\:{free},\:{so}\:{this}\:{should}\:{not} \\ $$$${apply}. \\ $$

Commented by mr W last updated on 26/Nov/24

see above

$${see}\:{above} \\ $$

Commented by ajfour last updated on 27/Nov/24

Nice sir, e decides all angles   for this case!

$${Nice}\:{sir},\:{e}\:{decides}\:{all}\:{angles}\: \\ $$$${for}\:{this}\:{case}! \\ $$

Commented by mr W last updated on 27/Nov/24

yes!  beside it′s possible only if  (M/m)>((9(√3)(1+1/e))/(3π))+(3/(4e))

$${yes}! \\ $$$${beside}\:{it}'{s}\:{possible}\:{only}\:{if} \\ $$$$\frac{{M}}{{m}}>\frac{\mathrm{9}\sqrt{\mathrm{3}}\left(\mathrm{1}+\mathrm{1}/{e}\right)}{\mathrm{3}\pi}+\frac{\mathrm{3}}{\mathrm{4}{e}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com