Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 213945 by Spillover last updated on 22/Nov/24

Answered by mathmax last updated on 23/Nov/24

I=∫_0 ^∞  e^(−[x](1+x−[x])) dx  =1+Σ_(n=1) ^∞ ∫_n ^(n+1)  e^(−n(1+x−n)) dx  =1+Σ_(n=1) ^∞ ∫_n ^(n+1) e^(−n+n^2 )  e^(−nx) dx  =1+Σ_(n=1) ^∞ e^(−n+n^2 ) [−(1/n)e^(−nx) ]_n ^(n+1)   =1−Σ_(n=1) ^∞ (e^(n^2 −n) /n){ e^(−n^2 −n) −e^(−n^2 ) }  =1−Σ_(n=1) ^∞ (e^(−2n) /n)+Σ_(n=1) ^∞  (e^(−n) /n)  on rappelle que Σ (z^n /n)=−ln(1−z) pour ∣z∣<1  I=1+ln(1−e^(−2) )−ln(1−e^(−1) )  =1+ln(1−(1/e^2 ))−ln(1−(1/e))

$${I}=\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{x}\right]\left(\mathrm{1}+{x}−\left[{x}\right]\right)} {dx} \\ $$$$=\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} \int_{{n}} ^{{n}+\mathrm{1}} \:{e}^{−{n}\left(\mathrm{1}+{x}−{n}\right)} {dx} \\ $$$$=\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} \int_{{n}} ^{{n}+\mathrm{1}} {e}^{−{n}+{n}^{\mathrm{2}} } \:{e}^{−{nx}} {dx} \\ $$$$=\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} {e}^{−{n}+{n}^{\mathrm{2}} } \left[−\frac{\mathrm{1}}{{n}}{e}^{−{nx}} \right]_{{n}} ^{{n}+\mathrm{1}} \\ $$$$=\mathrm{1}−\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{e}^{{n}^{\mathrm{2}} −{n}} }{{n}}\left\{\:{e}^{−{n}^{\mathrm{2}} −{n}} −{e}^{−{n}^{\mathrm{2}} } \right\} \\ $$$$=\mathrm{1}−\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{e}^{−\mathrm{2}{n}} }{{n}}+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}} \\ $$$${on}\:{rappelle}\:{que}\:\Sigma\:\frac{{z}^{{n}} }{{n}}=−{ln}\left(\mathrm{1}−{z}\right)\:{pour}\:\mid{z}\mid<\mathrm{1} \\ $$$${I}=\mathrm{1}+{ln}\left(\mathrm{1}−{e}^{−\mathrm{2}} \right)−{ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right) \\ $$$$=\mathrm{1}+{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\right)−{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$

Commented by mr W last updated on 23/Nov/24

=1+ln (1+(1/e))

$$=\mathrm{1}+\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{e}}\right) \\ $$

Commented by mehdee7396 last updated on 23/Nov/24

=ln(e+1)

$$={ln}\left({e}+\mathrm{1}\right) \\ $$

Commented by Spillover last updated on 26/Nov/24

right

$${right} \\ $$

Answered by Spillover last updated on 23/Nov/24

Answered by Spillover last updated on 23/Nov/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com