Question Number 213797 by efronzo1 last updated on 17/Nov/24 | ||
![]() | ||
Answered by Frix last updated on 17/Nov/24 | ||
![]() | ||
$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\:\frac{\mathrm{1}}{{a}_{{n}} {a}_{{n}+\mathrm{1}} }\:=\frac{\mathrm{20}}{{a}_{\mathrm{1}} \left({a}_{\mathrm{1}} +\mathrm{20}{d}\right)}=\frac{\mathrm{4}}{\mathrm{9}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{21}} {\sum}}\:{a}_{{n}} \:=\mathrm{21}{a}_{\mathrm{1}} +\mathrm{210}{d}=\mathrm{189} \\ $$$$\Rightarrow \\ $$$$\begin{cases}{{a}_{\mathrm{1}} =\mathrm{3}\wedge{d}=\frac{\mathrm{3}}{\mathrm{5}}\:\Rightarrow\:{a}_{\mathrm{6}} =\mathrm{6}\wedge{a}_{\mathrm{16}} =\mathrm{12}}\\{{a}_{\mathrm{1}} =\mathrm{15}\wedge{d}=−\frac{\mathrm{3}}{\mathrm{5}}\:\Rightarrow\:{a}_{\mathrm{6}} =\mathrm{12}\wedge{a}_{\mathrm{16}} =\mathrm{6}}\end{cases} \\ $$$$\Rightarrow \\ $$$${a}_{\mathrm{6}} {a}_{\mathrm{16}} =\mathrm{72} \\ $$ | ||
Commented by efronzo1 last updated on 17/Nov/24 | ||
![]() | ||
$$\:\mathrm{Why}\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\:\frac{\mathrm{1}}{{a}_{{n}} .{a}_{{n}+\mathrm{1}} }\:=\:\frac{\mathrm{20}}{{a}_{\mathrm{1}} .{a}_{\mathrm{21}} }\:=? \\ $$ | ||
Commented by mehdee7396 last updated on 17/Nov/24 | ||
![]() | ||
$$\frac{\mathrm{1}}{{a}_{\mathrm{1}} {a}_{\mathrm{2}} }=\frac{\mathrm{1}}{{d}}\left(\frac{\mathrm{1}}{{a}_{\mathrm{1}} }−\frac{\mathrm{1}}{{a}_{\mathrm{2}} }\right) \\ $$$$\frac{\mathrm{1}}{{a}_{\mathrm{2}} {a}_{\mathrm{3}} }=\frac{\mathrm{1}}{{d}}\left(\frac{\mathrm{1}}{{a}_{\mathrm{2}} }−\frac{\mathrm{1}}{{a}_{\mathrm{3}} }\right)\:,\:....,\frac{\mathrm{1}}{{a}_{\mathrm{20}} {a}_{\mathrm{21}} }=\frac{\mathrm{1}}{{d}}\left(\frac{\mathrm{1}}{{a}_{\mathrm{20}} }−\frac{\mathrm{1}}{{a}_{\mathrm{21}} }\right) \\ $$$$\Rightarrow\underset{\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\frac{\mathrm{1}}{{a}_{{n}} {a}_{{n}+\mathrm{1}} }=\frac{\mathrm{1}}{{d}}\left(\frac{\mathrm{1}}{{a}_{\mathrm{1}} }−\frac{\mathrm{1}}{{a}_{\mathrm{21}} }\right)=\frac{\mathrm{20}{d}}{{da}_{\mathrm{1}} {a}_{\mathrm{21}} }=\frac{\mathrm{20}}{{a}_{\mathrm{1}} {a}_{\mathrm{21}} } \\ $$$$ \\ $$ | ||