Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 213556 by ajfour last updated on 08/Nov/24

Commented by ajfour last updated on 08/Nov/24

Find radius.

$${Find}\:{radius}. \\ $$

Answered by A5T last updated on 08/Nov/24

((abc)/(4R))=((absinα)/2)⇒R=(c/(2sinα))[c=(√(a^2 +b^2 −2abcosα))]  ⇒R=((√(a^2 +b^2 −2abcosα))/(sinα))

$$\frac{{abc}}{\mathrm{4}{R}}=\frac{{absin}\alpha}{\mathrm{2}}\Rightarrow{R}=\frac{{c}}{\mathrm{2}{sin}\alpha}\left[{c}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{abcos}\alpha}\right] \\ $$$$\Rightarrow{R}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{abcos}\alpha}}{{sin}\alpha} \\ $$

Answered by mr W last updated on 08/Nov/24

c=(√(a^2 +b^2 −2ab cos α))  R=(c/(2 sin C))=((√(a^2 +b^2 −2ab cos α))/(2 sin α)) ✓

$${c}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\alpha} \\ $$$${R}=\frac{{c}}{\mathrm{2}\:\mathrm{sin}\:{C}}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\alpha}}{\mathrm{2}\:\mathrm{sin}\:\alpha}\:\checkmark \\ $$

Commented by ajfour last updated on 08/Nov/24

too good!

$${too}\:{good}! \\ $$

Answered by Spillover last updated on 09/Nov/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com