Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 212949 by Spillover last updated on 27/Oct/24

Answered by som(math1967) last updated on 27/Oct/24

Commented by som(math1967) last updated on 27/Oct/24

AB=BC=CD=AD=x   DE=r(√2)⇒OD=r(√2)+r+R  BD=2(r(√2)+r+R)  ∴ x=((BD)/( (√2)))=(√2)(r(√2)+r+R)   ((FG)/(BG))=tan 22(1/2)  BG=R×cot22(1/2)=R((√2)+1)  AB=x=AG+GB=R+R((√2)+1)  ∴(√2)(r(√2)+r+R)=R(2+(√2))   ⇒r(2+(√2))=R(2+(√2)−(√2))   (r/R)=(2/((2+(√2))))=((2−(√2))/1)

$${AB}={BC}={CD}={AD}={x} \\ $$$$\:{DE}={r}\sqrt{\mathrm{2}}\Rightarrow{OD}={r}\sqrt{\mathrm{2}}+{r}+{R} \\ $$$${BD}=\mathrm{2}\left({r}\sqrt{\mathrm{2}}+{r}+{R}\right) \\ $$$$\therefore\:{x}=\frac{{BD}}{\:\sqrt{\mathrm{2}}}=\sqrt{\mathrm{2}}\left({r}\sqrt{\mathrm{2}}+{r}+{R}\right) \\ $$$$\:\frac{{FG}}{{BG}}=\mathrm{tan}\:\mathrm{22}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${BG}={R}×{cot}\mathrm{22}\frac{\mathrm{1}}{\mathrm{2}}={R}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$$${AB}={x}={AG}+{GB}={R}+{R}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$$$\therefore\sqrt{\mathrm{2}}\left({r}\sqrt{\mathrm{2}}+{r}+{R}\right)={R}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right) \\ $$$$\:\Rightarrow{r}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)={R}\left(\mathrm{2}+\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}}\right) \\ $$$$\:\frac{{r}}{{R}}=\frac{\mathrm{2}}{\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{1}} \\ $$

Answered by ajfour last updated on 27/Oct/24

r(1+(√2))+R=R(1+(√2))=(a/( (√2)))  (r/R)=((√2)/(1+(√2)))=2−(√2)  ≈ 0.586  R=a(1−(1/( (√2))))≈0.393a     r=(3−2(√2))a ≈0.172a

$${r}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)+{R}={R}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)=\frac{{a}}{\:\sqrt{\mathrm{2}}} \\ $$$$\frac{{r}}{{R}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{1}+\sqrt{\mathrm{2}}}=\mathrm{2}−\sqrt{\mathrm{2}}\:\:\approx\:\mathrm{0}.\mathrm{586} \\ $$$${R}={a}\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\approx\mathrm{0}.\mathrm{393}{a}\:\:\: \\ $$$${r}=\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right){a}\:\approx\mathrm{0}.\mathrm{172}{a} \\ $$

Answered by A5T last updated on 27/Oct/24

Let side be s⇒diagonal=s(√2)  (s^2 /2)=(R/2)(2s+s(√2))⇒R=(s/(2+(√2)))⇒(s/R)=2+(√2)  r(√2)+r+R=((s(√2))/2)⇒^(/R) (r/R)(1+(√2))=(((√2)s)/(2R))−1  ⇒(r/R)=((√2)/(1+(√2)))=((((√2))((√2)−1))/( ((√2)+1)((√2)−1)))=2−(√2)

$${Let}\:{side}\:{be}\:{s}\Rightarrow{diagonal}={s}\sqrt{\mathrm{2}} \\ $$$$\frac{{s}^{\mathrm{2}} }{\mathrm{2}}=\frac{{R}}{\mathrm{2}}\left(\mathrm{2}{s}+{s}\sqrt{\mathrm{2}}\right)\Rightarrow{R}=\frac{{s}}{\mathrm{2}+\sqrt{\mathrm{2}}}\Rightarrow\frac{{s}}{{R}}=\mathrm{2}+\sqrt{\mathrm{2}} \\ $$$${r}\sqrt{\mathrm{2}}+{r}+{R}=\frac{{s}\sqrt{\mathrm{2}}}{\mathrm{2}}\overset{/{R}} {\Rightarrow}\frac{{r}}{{R}}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)=\frac{\sqrt{\mathrm{2}}{s}}{\mathrm{2}{R}}−\mathrm{1} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{1}+\sqrt{\mathrm{2}}}=\frac{\left(\sqrt{\mathrm{2}}\right)\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)}{\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)}=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$

Answered by Spillover last updated on 27/Oct/24

Answered by Spillover last updated on 27/Oct/24

  R+√2R=R+r+√2r  √2R=r+√2r  r/R=√2/(1+√2)        =√2(√2-1)/(2-1)         =2-√2

$$ \\ $$R+√2R=R+r+√2r √2R=r+√2r r/R=√2/(1+√2) =√2(√2-1)/(2-1) =2-√2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com