Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 212901 by ajfour last updated on 26/Oct/24

Commented by ajfour last updated on 26/Oct/24

Find x and u_(min) .

$${Find}\:{x}\:{and}\:{u}_{{min}} . \\ $$

Commented by ajfour last updated on 26/Oct/24

just published this on Magnetic Field (my video lecture on youtube) https://youtu.be/qx0TX9LSlzQ?si=S-eutbZgXcerKPSe

Answered by mr W last updated on 27/Oct/24

Commented by ajfour last updated on 27/Oct/24

let projectile launched from cylinder  tangentially.  h−R(1+sin ϕ)=R(1+cos ϕ)cot ϕ                                    −((gR^2 (1+cos ϕ)^2 )/(2[u^2 −2gR(1+sin ϕ)]sin^2 ϕ))  For R=2, h=6    u=u_(min)   when  ϕ ≈ 0.4401 rad ≈ 25.2°  from above applying differential  calculus we find u_(min)  for ϕ=ϕ_0   rewinding we see ball drops to  ground when released tangentially  from cylinder, so if  v_0 =(√(u_(min) ^2 −2gR(1+sin ϕ_0 )))  Now L=R(1+cos ϕ_0 )+s  −s=(v_0 sin ϕ)t  −R(1+sin ϕ_0 )=(v_0 sin ϕ_0 )t−((gt^2 )/2)  ★

$${let}\:{projectile}\:{launched}\:{from}\:{cylinder} \\ $$$${tangentially}. \\ $$$${h}−{R}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)={R}\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)\mathrm{cot}\:\varphi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{{gR}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{cos}\:\varphi\right)^{\mathrm{2}} }{\mathrm{2}\left[{u}^{\mathrm{2}} −\mathrm{2}{gR}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)\right]\underline{\mathrm{sin}\:^{\mathrm{2}} \varphi}} \\ $$$${For}\:{R}=\mathrm{2},\:{h}=\mathrm{6}\:\:\:\:{u}={u}_{{min}} \:\:{when} \\ $$$$\varphi\:\approx\:\mathrm{0}.\mathrm{4401}\:{rad}\:\approx\:\mathrm{25}.\mathrm{2}° \\ $$$${from}\:{above}\:{applying}\:{differential} \\ $$$${calculus}\:{we}\:{find}\:{u}_{{min}} \:{for}\:\varphi=\varphi_{\mathrm{0}} \\ $$$${rewinding}\:{we}\:{see}\:{ball}\:{drops}\:{to} \\ $$$${ground}\:{when}\:{released}\:{tangentially} \\ $$$${from}\:{cylinder},\:{so}\:{if} \\ $$$${v}_{\mathrm{0}} =\sqrt{{u}_{{min}} ^{\mathrm{2}} −\mathrm{2}{gR}\left(\mathrm{1}+\mathrm{sin}\:\varphi_{\mathrm{0}} \right)} \\ $$$${Now}\:{L}={R}\left(\mathrm{1}+\mathrm{cos}\:\varphi_{\mathrm{0}} \right)+{s} \\ $$$$−{s}=\left({v}_{\mathrm{0}} \mathrm{sin}\:\varphi\right){t} \\ $$$$−{R}\left(\mathrm{1}+\mathrm{sin}\:\varphi_{\mathrm{0}} \right)=\left({v}_{\mathrm{0}} \mathrm{sin}\:\varphi_{\mathrm{0}} \right){t}−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\bigstar \\ $$

Commented by mr W last updated on 27/Oct/24

x=u cos θ t  y=u sin θ t−((gt^2 )/2)  y=tan θ x−(((1+tan^2  θ)gx^2 )/(2u^2 ))  let m=tan θ  y=mx−(((1+m^2 )gx^2 )/(2u^2 ))  (dy/dx)=m−(((1+m^2 )gx)/u^2 )    at top of wall:  h=mL−(((1+m^2 )gL^2 )/(2u^2 ))  ⇒(h/R)=m((L/R))−(((1+m^2 )gR((L/R))^2 )/(2u^2 ))    ...(i)  at touching point on circle:  x_P =L−R−R cos ϕ  y_P =R(1+sin ϕ)  R(1+sin ϕ)=m(L−R−R cos ϕ)−(((1+m^2 )g(L−R−R cos ϕ)^2 )/(2u^2 ))  ⇒(1+sin ϕ)=m((L/R)−1−cos ϕ)−(((1+m^2 )gR((L/R)−1−cos ϕ)^2 )/(2u^2 ))    ...(ii)  (1/(tan ϕ))=m−(((1+m^2 )g(L−R−R cos ϕ))/u^2 )  ⇒(1/(tan ϕ))=m−(((1+m^2 )gR((L/R)−1−cos ϕ))/u^2 )   ...(iii)  let ξ=(L/R), Φ=((gR)/(2u^2 )), μ=(h/R)  μ=mξ−(1+m^2 )ξ^2 Φ    ...(i)  1+sin ϕ=m(ξ−1−cos ϕ)−(1+m^2 )(ξ−1−cos ϕ)^2 Φ    ...(ii)  (1/(tan ϕ))=m−2(1+m^2 )(ξ−1−cos ϕ)Φ   ...(iii)  from (ii) and (iii):  2(1+sin ϕ)=(ξ−1−cos ϕ)(m+(1/(tan ϕ)))  ⇒m=((2(1+sin ϕ))/(ξ−1−cos ϕ))−(1/(tan ϕ))    ...(iv)  from (i) and (iii):  (ξ^2 /(tan ϕ))=mξ^2 −2(ξ−1−cos ϕ)(mξ−μ)   ...(v)  (iv) into (v):  ((1+sin ϕ)/(ξ−1−cos ϕ))−(1/(tan ϕ))−(1−((1+cos ϕ)/ξ))[((2(1+sin ϕ))/(ξ−1−cos ϕ))−(1/(tan ϕ))−(μ/ξ)]=0   ...(II)  2(1+sin ϕ)ξ^3 −[(1+sin ϕ)(3+2 cos ϕ)−(((1+cos ϕ−μ tan ϕ))/(tan ϕ))]ξ^2 −(((1+cos ϕ−2μ tan ϕ)(1+cos ϕ))/(tan ϕ))ξ−μ(1+cos ϕ)^2 =0   ...(II′)  it′s clear that ξ>2.  (iv) into (i):  Φ=(([((2(1+sin ϕ))/(ξ−1−cos ϕ))−(1/(tan ϕ))]ξ−μ)/({1+[((2(1+sin ϕ))/(ξ−1−cos ϕ))−(1/(tan ϕ))]^2 }ξ^2 ))    ...(I)  now it is to find the maximum of  Φ(ξ, ϕ), which means the minimum  of u, under the condition (II).

$${x}={u}\:\mathrm{cos}\:\theta\:{t} \\ $$$${y}={u}\:\mathrm{sin}\:\theta\:{t}−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${y}=\mathrm{tan}\:\theta\:{x}−\frac{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right){gx}^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{2}} } \\ $$$${let}\:{m}=\mathrm{tan}\:\theta \\ $$$${y}={mx}−\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right){gx}^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{2}} } \\ $$$$\frac{{dy}}{{dx}}={m}−\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right){gx}}{{u}^{\mathrm{2}} } \\ $$$$ \\ $$$${at}\:{top}\:{of}\:{wall}: \\ $$$${h}={mL}−\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right){gL}^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{h}}{{R}}={m}\left(\frac{{L}}{{R}}\right)−\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right){gR}\left(\frac{{L}}{{R}}\right)^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{2}} }\:\:\:\:...\left({i}\right) \\ $$$${at}\:{touching}\:{point}\:{on}\:{circle}: \\ $$$${x}_{{P}} ={L}−{R}−{R}\:\mathrm{cos}\:\varphi \\ $$$${y}_{{P}} ={R}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right) \\ $$$${R}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)={m}\left({L}−{R}−{R}\:\mathrm{cos}\:\varphi\right)−\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right){g}\left({L}−{R}−{R}\:\mathrm{cos}\:\varphi\right)^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{2}} } \\ $$$$\Rightarrow\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)={m}\left(\frac{{L}}{{R}}−\mathrm{1}−\mathrm{cos}\:\varphi\right)−\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right){gR}\left(\frac{{L}}{{R}}−\mathrm{1}−\mathrm{cos}\:\varphi\right)^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{2}} }\:\:\:\:...\left({ii}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}={m}−\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right){g}\left({L}−{R}−{R}\:\mathrm{cos}\:\varphi\right)}{{u}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}={m}−\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right){gR}\left(\frac{{L}}{{R}}−\mathrm{1}−\mathrm{cos}\:\varphi\right)}{{u}^{\mathrm{2}} }\:\:\:...\left({iii}\right) \\ $$$${let}\:\xi=\frac{{L}}{{R}},\:\Phi=\frac{{gR}}{\mathrm{2}{u}^{\mathrm{2}} },\:\mu=\frac{{h}}{{R}} \\ $$$$\mu={m}\xi−\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\xi^{\mathrm{2}} \Phi\:\:\:\:...\left({i}\right) \\ $$$$\mathrm{1}+\mathrm{sin}\:\varphi={m}\left(\xi−\mathrm{1}−\mathrm{cos}\:\varphi\right)−\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\left(\xi−\mathrm{1}−\mathrm{cos}\:\varphi\right)^{\mathrm{2}} \Phi\:\:\:\:...\left({ii}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}={m}−\mathrm{2}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\left(\xi−\mathrm{1}−\mathrm{cos}\:\varphi\right)\Phi\:\:\:...\left({iii}\right) \\ $$$${from}\:\left({ii}\right)\:{and}\:\left({iii}\right): \\ $$$$\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)=\left(\xi−\mathrm{1}−\mathrm{cos}\:\varphi\right)\left({m}+\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}\right) \\ $$$$\Rightarrow{m}=\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)}{\xi−\mathrm{1}−\mathrm{cos}\:\varphi}−\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}\:\:\:\:...\left({iv}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({iii}\right): \\ $$$$\frac{\xi^{\mathrm{2}} }{\mathrm{tan}\:\varphi}={m}\xi^{\mathrm{2}} −\mathrm{2}\left(\xi−\mathrm{1}−\mathrm{cos}\:\varphi\right)\left({m}\xi−\mu\right)\:\:\:...\left({v}\right) \\ $$$$\left({iv}\right)\:{into}\:\left({v}\right): \\ $$$$\frac{\mathrm{1}+\mathrm{sin}\:\varphi}{\xi−\mathrm{1}−\mathrm{cos}\:\varphi}−\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}−\left(\mathrm{1}−\frac{\mathrm{1}+\mathrm{cos}\:\varphi}{\xi}\right)\left[\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)}{\xi−\mathrm{1}−\mathrm{cos}\:\varphi}−\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}−\frac{\mu}{\xi}\right]=\mathrm{0}\:\:\:...\left({II}\right) \\ $$$$\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)\xi^{\mathrm{3}} −\left[\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)\left(\mathrm{3}+\mathrm{2}\:\mathrm{cos}\:\varphi\right)−\frac{\left(\mathrm{1}+\mathrm{cos}\:\varphi−\mu\:\mathrm{tan}\:\varphi\right)}{\mathrm{tan}\:\varphi}\right]\xi^{\mathrm{2}} −\frac{\left(\mathrm{1}+\mathrm{cos}\:\varphi−\mathrm{2}\mu\:\mathrm{tan}\:\varphi\right)\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)}{\mathrm{tan}\:\varphi}\xi−\mu\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)^{\mathrm{2}} =\mathrm{0}\:\:\:...\left({II}'\right) \\ $$$${it}'{s}\:{clear}\:{that}\:\xi>\mathrm{2}. \\ $$$$\left({iv}\right)\:{into}\:\left({i}\right): \\ $$$$\Phi=\frac{\left[\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)}{\xi−\mathrm{1}−\mathrm{cos}\:\varphi}−\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}\right]\xi−\mu}{\left\{\mathrm{1}+\left[\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)}{\xi−\mathrm{1}−\mathrm{cos}\:\varphi}−\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}\right]^{\mathrm{2}} \right\}\xi^{\mathrm{2}} }\:\:\:\:...\left({I}\right) \\ $$$${now}\:{it}\:{is}\:{to}\:{find}\:{the}\:{maximum}\:{of} \\ $$$$\Phi\left(\xi,\:\varphi\right),\:{which}\:{means}\:{the}\:{minimum} \\ $$$${of}\:{u},\:{under}\:{the}\:{condition}\:\left({II}\right). \\ $$

Commented by mr W last updated on 27/Oct/24

Commented by mr W last updated on 27/Oct/24

Commented by mr W last updated on 27/Oct/24

Commented by mr W last updated on 27/Oct/24

Commented by ajfour last updated on 27/Oct/24

Commented by ajfour last updated on 27/Oct/24

(u^2 /(2gR))=1+sin ϕ        +(((1+cos ϕ)^2 /(4sin^2 ϕ))/((1+cos ϕ)cot ϕ+sin ϕ+1−h/R))

$$\frac{{u}^{\mathrm{2}} }{\mathrm{2}{gR}}=\mathrm{1}+\mathrm{sin}\:\varphi \\ $$$$\:\:\:\:\:\:+\frac{\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)^{\mathrm{2}} /\left(\mathrm{4sin}\:^{\mathrm{2}} \varphi\right)}{\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)\mathrm{cot}\:\varphi+\mathrm{sin}\:\varphi+\mathrm{1}−{h}/{R}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by mr W last updated on 27/Oct/24

yes, that′s right!   great approach!

$${yes},\:{that}'{s}\:{right}!\: \\ $$$${great}\:{approach}! \\ $$

Commented by mr W last updated on 27/Oct/24

Commented by ajfour last updated on 27/Oct/24

Thank you in everyrespect, sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com