Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 212514 by ajfour last updated on 16/Oct/24

Answered by mr W last updated on 18/Oct/24

Commented by mr W last updated on 17/Oct/24

c^2 =a^2 +b^2 −2ab cos θ  F=((kq^2 )/c^2 )=((kq^2 )/(a^2 +b^2 −2ab cos θ))  OC=h=((√(2a^2 +2b^2 −c^2 ))/2)=((√(a^2 +b^2 +2ab cos θ))/2)  (F/(mg))=(c/(2h))=(√((a^2 +b^2 −2ab cos θ)/(a^2 +b^2 +2ab cos θ)))  ((kq^2 )/(mg(a^2 +b^2 −2ab cos θ)))=(√((a^2 +b^2 −2ab cos θ)/(a^2 +b^2 +2ab cos θ)))  ((kq^2 )/(mg(a^2 +b^2 )(1−((2ab cos θ)/(a^2 +b^2 )))))=(√((1−((2ab cos θ)/(a^2 +b^2 )) )/(1+((2ab cos θ)/(a^2 +b^2 )))))  with λ=((2ab cos θ)/(a^2 +b^2 )), μ=((kq^2 )/(mg(a^2 +b^2 )))  (μ/(1−λ))=(√((1−λ )/(1+λ)))  ⇒λ^3 −3λ^2 +(3+μ^2 )λ+μ^2 −1=0  let λ=s+1  ⇒s^3 +μ^2 s+2μ^2 =0  ⇒s=((μ^2 ((√(1+(μ^2 /(27))))−1)))^(1/3) −((μ^2 ((√(1+(μ^2 /(27))))+1)))^(1/3)   ⇒λ=1+((μ^2 ((√(1+(μ^2 /(27))))−1)))^(1/3) −((μ^2 ((√(1+(μ^2 /(27))))+1)))^(1/3)   ⇒θ=cos^(−1) {((a^2 +b^2 )/(2ab))[1+((μ^2 ((√(1+(μ^2 /(27))))−1)))^(1/3) −((μ^2 ((√(1+(μ^2 /(27))))+1)))^(1/3) ]}

$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta \\ $$$${F}=\frac{{kq}^{\mathrm{2}} }{{c}^{\mathrm{2}} }=\frac{{kq}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta} \\ $$$${OC}={h}=\frac{\sqrt{\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta}}{\mathrm{2}} \\ $$$$\frac{{F}}{{mg}}=\frac{{c}}{\mathrm{2}{h}}=\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta}} \\ $$$$\frac{{kq}^{\mathrm{2}} }{{mg}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta\right)}=\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta}} \\ $$$$\frac{{kq}^{\mathrm{2}} }{{mg}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left(\mathrm{1}−\frac{\mathrm{2}{ab}\:\mathrm{cos}\:\theta}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)}=\sqrt{\frac{\mathrm{1}−\frac{\mathrm{2}{ab}\:\mathrm{cos}\:\theta}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:}{\mathrm{1}+\frac{\mathrm{2}{ab}\:\mathrm{cos}\:\theta}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}} \\ $$$${with}\:\lambda=\frac{\mathrm{2}{ab}\:\mathrm{cos}\:\theta}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} },\:\mu=\frac{{kq}^{\mathrm{2}} }{{mg}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$$\frac{\mu}{\mathrm{1}−\lambda}=\sqrt{\frac{\mathrm{1}−\lambda\:}{\mathrm{1}+\lambda}} \\ $$$$\Rightarrow\lambda^{\mathrm{3}} −\mathrm{3}\lambda^{\mathrm{2}} +\left(\mathrm{3}+\mu^{\mathrm{2}} \right)\lambda+\mu^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$${let}\:\lambda={s}+\mathrm{1} \\ $$$$\Rightarrow{s}^{\mathrm{3}} +\mu^{\mathrm{2}} {s}+\mathrm{2}\mu^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{s}=\sqrt[{\mathrm{3}}]{\mu^{\mathrm{2}} \left(\sqrt{\mathrm{1}+\frac{\mu^{\mathrm{2}} }{\mathrm{27}}}−\mathrm{1}\right)}−\sqrt[{\mathrm{3}}]{\mu^{\mathrm{2}} \left(\sqrt{\mathrm{1}+\frac{\mu^{\mathrm{2}} }{\mathrm{27}}}+\mathrm{1}\right)} \\ $$$$\Rightarrow\lambda=\mathrm{1}+\sqrt[{\mathrm{3}}]{\mu^{\mathrm{2}} \left(\sqrt{\mathrm{1}+\frac{\mu^{\mathrm{2}} }{\mathrm{27}}}−\mathrm{1}\right)}−\sqrt[{\mathrm{3}}]{\mu^{\mathrm{2}} \left(\sqrt{\mathrm{1}+\frac{\mu^{\mathrm{2}} }{\mathrm{27}}}+\mathrm{1}\right)} \\ $$$$\Rightarrow\theta=\mathrm{cos}^{−\mathrm{1}} \left\{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}{ab}}\left[\mathrm{1}+\sqrt[{\mathrm{3}}]{\mu^{\mathrm{2}} \left(\sqrt{\mathrm{1}+\frac{\mu^{\mathrm{2}} }{\mathrm{27}}}−\mathrm{1}\right)}−\sqrt[{\mathrm{3}}]{\mu^{\mathrm{2}} \left(\sqrt{\mathrm{1}+\frac{\mu^{\mathrm{2}} }{\mathrm{27}}}+\mathrm{1}\right)}\right]\right\} \\ $$

Commented by ajfour last updated on 18/Oct/24

marvellous! i ll think of another way.

$${marvellous}!\:{i}\:{ll}\:{think}\:{of}\:{another}\:{way}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com