Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 212428 by Spillover last updated on 13/Oct/24

Answered by Yassine84 last updated on 13/Oct/24

let f(x)=(1+x^2 )(1+x^3 )(1+x^4 ) then  lim_1  (((1+x^2 )(1+x^3 )(1+x^4 )−8)/(x−1))=f′(1)=36    because f′(x)=2x(1+x^3 )(1+x^4 )+3x^2 (1+x^2 )(1+x^4 )+4x^3 (1+x^2 )(1+x^3 )

$${let}\:{f}\left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)\:{then} \\ $$$${li}\underset{\mathrm{1}} {{m}}\:\frac{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)−\mathrm{8}}{{x}−\mathrm{1}}={f}'\left(\mathrm{1}\right)=\mathrm{36} \\ $$$$ \\ $$$${because}\:{f}'\left({x}\right)=\mathrm{2}{x}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)+\mathrm{3}{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)+\mathrm{4}{x}^{\mathrm{3}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{3}} \right) \\ $$$$ \\ $$

Answered by golsendro last updated on 13/Oct/24

 = lim_(x→1)  (((x−1)(x^8 +x^7 +2x^6 +3x^5 +4x^4 +5x^3 +6x^2 +7x+7))/(x−1))     = 1+1+2+3+4+5+6+7+7   = 8+(7/2)(8)=8+28=36

$$\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{8}} +\mathrm{x}^{\mathrm{7}} +\mathrm{2x}^{\mathrm{6}} +\mathrm{3x}^{\mathrm{5}} +\mathrm{4x}^{\mathrm{4}} +\mathrm{5x}^{\mathrm{3}} +\mathrm{6x}^{\mathrm{2}} +\mathrm{7x}+\mathrm{7}\right)}{\mathrm{x}−\mathrm{1}}\: \\ $$$$\:\:=\:\mathrm{1}+\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{7} \\ $$$$\:=\:\mathrm{8}+\frac{\mathrm{7}}{\mathrm{2}}\left(\mathrm{8}\right)=\mathrm{8}+\mathrm{28}=\mathrm{36} \\ $$

Answered by Nadirhashim last updated on 13/Oct/24

expanig and devid  im(x^8 +x^7 −2x^6 +3x^5 +4x^4 +5x^3   +4x^4 +5x^3 +6x^2 +7x+7   when x=1 the answer=36

$$\boldsymbol{{expanig}}\:\boldsymbol{{and}}\:\boldsymbol{{devid}} \\ $$$$\boldsymbol{{im}}\left(\boldsymbol{{x}}^{\mathrm{8}} +{x}^{\mathrm{7}} −\mathrm{2}{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{3}} \right. \\ $$$$+\mathrm{4}{x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{3}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{7} \\ $$$$\:{when}\:{x}=\mathrm{1}\:{the}\:{answer}=\mathrm{36} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com